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ABSTRACT 
In our effort to elucidate the systems biology of the model organism, Escherichia coli, we have 

developed a mathematical model that simulates the allosteric regulation for threonine biosynthesis 
pathway starting from aspartate. To achieve this goal, we used kMech, a Cellerator language extension 
that describes enzyme mechanisms for the mathematical modeling of metabolic pathways. These 
mechanisms are converted by Cellerator into ordinary differential equations (ODEs) solvable by 
Mathematica. In this paper, we describe a more flexible model in Cellerator, which generalizes the 
Monod, Wyman, Changeux (MWC) model for enzyme allosteric regulation to allow for multiple 
substrate, activator and inhibitor binding sites. Furthermore, we have developed a model that describes 
the behavior of the bifunctional allosteric enzyme aspartate Kinase I-Homoserine Dehydrogenase I (AKI-
HDHI). This model predicts the partition of enzyme activities in the steady state which paves a way for a 
more generalized prediction of the behavior of bifunctional enzymes. 
 
 
1. INTRODUCTION 

Systems biology utilizes the mathematical modeling of biological networks to allow scientists to 
understand and observe complex biological behaviors and predict the outcomes of metabolic and genetic 
perturbations. The major biological networks that are undergoing active modeling include: transcriptional 
regulation, metabolic networks, signal transduction and mechanical networks. To integrate the large 
amount of data produced by these networks, it is essential to develop mathematical models to simulate 
such complex biological systems. 
 We have previously described a mathematical model tool for complex enzyme mechanism, 
kMech (1) and applied it to model the biosynthesis of the branched chain amino acids, L-isoleucine, L-
valine, and L-leucine in Escherichia coli (2).  As a rule of thumb, metabolic pathways are regulated 
tightly by the feedback inhibition of the end-products.  In kMech, we provide three basic types of 
inhibition (competitive, non-competitive and uncompetitive). Here, we develop a Generalized Monod, 
Wyman, Changeux (GMWC) model for the more complex, allosteric feedback regulation for enzymes 
regulated by different binding sites of substrates, activators and inhibitors. The GMWC model is an 
extension of the original MWC concerted allosteric transition model published by Monod et al. (3). The 
major enhancement is that the GMWC model can take multiple substrate, activator and inhibitor binding 
sites, respectively verse the original MWC can only take one substrate, activator and inhibitor binding 
sites, respectively. The GMWC model is especially useful for modeling the threonine biosynthesis in E. 
coli, since there are three allosteric enzymes (out of total six enzymes) in this pathway. It is upstream of 
the pathways for the biosynthesis of L-isoleucine, L-valine, and L-leucine. This work is another step 
towards the elucidation of the systems biology of the model organism, E. coli, since most of allosteric 
enzymes play important roles in the regulation of metabolic flux channeling. 

Threonine synthesis starting from Aspartate is a five-step metabolic pathway (Fig. 1).  
 
 

 
Fig.1 . The Metabolic Pathway for Threonine Biosynthesis from Aspartate in E. coli.  The abbreviations of 
metabolites are: Asp, aspartate; AspP, Aspartyl phosphate; ASA, aspartate semialdehyde; Hse, homoserine; HseP, 
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homoserine phosphate; Thr, threonine; and the abbreviations of enzymes are: AKI, aspartate kinase I (EC 2.7.2.4); 
AKIII, aspartate kinase III (EC 2.7.2.4); HDHI, homoserine dehydrogenase I (EC 1.1.1.3); ASD, semialdehyde 
dehydrogenase (EC 1.2.1.11); HSK, homoserine kinase (EC 2.7.1.39); TS, threonine synthase (EC 4.2.3.1). 
Feedback inhibition patterns are indicated by dashed lines. 
 

The first step of the pathway is a two-substrate, two-product (BiBi) reaction with the two 
substrates aspartate (Asp) and ATP, and the two products Aspartyl phosphate (AspP) and ADP. This step 
is catalyzed by three isozymes, aspartate kinase I (AKI), aspartate kinase II (AKII) and aspartate kinase 
III (AKIII). AKI is a bifunctional enzyme (AKI-HDHI) carrying both aspartate kinase and homoserine 
dehydrogenase (HDHI) activities (Step three). It is an allosteric enzyme made up of four subunits and 
inhibited by threonine (4). The kinetic behavior of this enzyme can be model by the MWC model.  This 
model states that the enzyme exists in equilibrium between an active (R) state and an inactive (T) state, 
whereby binding of substrate or activator will shift the equilibrium towards the R state while binding of 
inhibitor will shift it towards the T state. The fractional saturation (Yf) of enzyme also can be bound by 
substrate is described as a function of the substrates and effectors (3). AKII is also a bifunctional enzyme 
carrying both aspartate kinase and homoserine dehydrogenase (HDHII) activities. The enzyme has no 
effectors and exists at very low levels in E. coli K12 (5). Therefore, we did not include it in our 
simulation. AKIII is an allosteric enzyme made up of two subunits and inhibited by lysine (6). Its kinetic 
behavior is also described by the MWC model (6). 
 In the second step of the pathway, aspartate semialdehyde dehydrogenase (ASD) catalyzes a 
reversible two substrates/three products (BiTri) reaction with AspP and NADPH as substrates and 
aspartate semialdehyde (ASA), NADP and inorganic phosphate as products (7). The third step is a BiBi 
reaction with the two substrates ASA and NADPH and the two products homoserine (Hse) and NADP. 
This step is catalyzed by HDHI activity of the bi-functional enzymes (AKI-HDHI). HDHI is an allosteric 
enzyme made up of four subunits and is inhibited by threonine (3). Its kinetic behavior also is described 
by the MWC model (3). 

The forth step of the pathway is a BiBi reaction with the two substrates HSE and ATP and the 
two products homoserine phosphate (HseP) and ADP. This step is catalyzed by homoserine kinase (HSK) 
and competitively inhibited by threonine (8). The fifth and final step of the pathway is a simple one 
substrate/one product reaction that results in the conversion of HseP into threonine. This step is catalyzed 
by threonine synthase (TS) and has no effectors (9). 

The enzyme kinetics of this pathway has been subjected to extensive study over the past 40 years 
and many of the kinetic and physical parameters are reported in the literature. As a part of the effort to 
elucidate the systems biology of E. coli, we aim to model the metabolic pathway of synthesis of threonine 
from aspartate and integrate the data reported in literature to produce a simulation that describes carbon 
flow through this pathway, and predict the partition of enzyme activities within the bi-functional enzymes 
(AKI-HDHI). 
 
2.  METHODS AND TOOLS 

To generate a simulation of threonine biosynthesis, we used Mathematica, Cellerator and kMech. 
Mathematica is software developed by Wolfram Research and used in various applications including 
mathematical calculations, solving equations and programming. Cellerator is a Mathematica package 
designed for the generation of chemical reactions that describe complex cascades as well as the 
differential equations that are derived from this chemical network (10). These differential equations are 
solvable by Mathematica. kMech is a Cellerator language extension that describes enzyme mechanisms 
for the mathematical modeling of metabolic pathways. Such mechanisms are codified to generate a set of 
elementary reactions that can be translated by Cellerator into ordinary differential equations (ODEs) 
solvable by Mathematica (1). 
 
 



2.1 Parameter Estimation and Optimization 
The mathematical model for the pathway includes the entire forward and reverse single and 

multiple substrate enzyme kinetic reactions and the regulatory feedback inhibition mechanisms of the 
pathway (allosteric, competitive, and non-competitive). Enzyme kinetic constants for substrate (Km), 
inhibitor (Ki), and activator (Ka) were obtained from the literature. Forward and reverse rate constants (kf, 
kr, kfi, kri,) were approximated from kinetic measurements (Km, kcat). The development of such 
approximation methods for estimating unavailable model parameters were previously described (1). 

Intracellular enzyme concentrations are usually not available. For this reason, we previously 
described a method for approximating enzyme concentrations from DNA microarray data (1, 2). This can 
be accomplished based on the fact that purification tables in the literature (11) suggest that the 
intracellular concentration of threonine deaminase in E. coli is 4 µM and on recent experiments that show 
a positive correlation between mRNA levels measured with DNA microarrays and protein abundance in E. 
coli (12). Consequently, the intracellular levels of enzymes can be inferred and we have shown that this is 
a reasonable method and that simulations using such inferred values correlate well with experimental 
values (2).  However, because of the many variables that can influence in vitro measurements, corrections 
are sometimes necessary for the kinetic measurements (Km, kcat) values to optimize the model to fit the 
experimental data. 

A Mathematica notebook file of the simulation with the detailed kMech and GMWC models, 
corresponding ODEs, kinetic rate constants, and initial conditions for solving the ODEs for the pathway, 
a Mathematica executable kMech.m file, and a list of reported and optimized enzyme kinetic and physical 
parameters used to solve differential equations in the simulation and their literature sources is available at 
the University of California, Irvine, Institute for Genomics and Bioinformatics website, 
http://www.igb.uci.edu/servers/sb.html.  Cellerator, available at the same site, is free of charge to 
academic, U.S. government, and other nonprofit organizations. 
 
2.2 Generalized Monod, Wyman, Changeux Concerted Allosteric 

Transition Model (GMWC) 
According to the original MWC model (3), AKI, HDHI and AKIII can exist in an active(R) state 

or an inactive (T) state. The fraction of active enzyme in the R or T states is determined by the 
concentrations and relative affinities of substrate (Asp for AKI and AKIII, and ASA for HDHI), inhibitor 
(Threonine for AKI and HDHI and Lys for AKIII), and activator (none present in this model) for the R 
and T states. The original model is described by two equations: 
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concentrations, respectively;  Km, Ki and Ka are their respective dissociation constants; n is the number of 
substrate and effector ligand binding sites; c is the ratio of the affinity of the substrate for the catalytically 
active R state and the inhibited T state; L is the equilibrium constant (allosteric constant) for the R and T 
states in the absence of ligands; vo is the initial reaction velocity; and Vmax is the maximal reaction velocity. 

The first equation describes the fraction of the enzyme in the catalytically active state (R) as a 
function of substrate and effector concentrations. The second equation describes the fractional saturation 
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(Yf = vo/Vmax) of the enzyme occupied by substrate as a function of substrate and effector concentrations 
(13).  

Instead of implementing the original MWC model, we developed a more flexible model in 
Cellerator, which generalizes the MWC model in the following ways.  In MWC there is one substrate, and 
on each identical subunit there is one binding site for that substrate.  There is also one binding site per 
subunit for an activator and another for an inhibitor.  Here, we generalize to the case of multiple 
substrates.  Each substrate will have its own activator and inhibitor.  Each triple of a substrate, its 
activator, and its inhibitor will have a corresponding triple of binding sites on each subunit. 

To find the partition function and therefore the dynamics for this Generalized MWC (GMWC) 
model, we generalize the above equations by reasoning as follows. If there were only one global state for 
the enzyme, all binding events would be independent of one another.  The partition function would be a 
product of independent partition functions, one per binding site, as follows: 

 
Z1− state = (1+ sq )(1+ aq )(1+ iq )

q
∏

n
∏ = Z1− state = (1+ sq )n (1+ aq )n (1+ iq )n

q
∏ . 

Where q is the number of substrates; sq = [Sq ] / KMq is the fugacity of the substrate at any of its (identical) 
sites, where [  is the concentration of substrate q, and K  sets the scale for [SSq ] Mq q] and is a generalized 
version of the dissociation constant of the enzyme-substrate complex in steady state; similarly, 

aqqq KAa ][=  where  is the concentration of activator for substrate ;][ qA qS iqqq KIi ][=  where 

 is the concentration of inhibitor for . ][ qI qS
However, the actual situation is different: there are two global states of the n-subunit enzyme, the 

“R” and “T” states (as in MWC itself).  In the R state, activators can bind but not inhibitors.  In the T state, 
inhibitors can bind, but not activators.  In either state, production occurs in proportion to the number of 
subunits containing all required substrates.   Thus the partition is a sum of two terms, one for the R state 
omitting inhibitors from the hypothetical single-state partition function shown above, and one for the T 
state omitting activators, with an extra multiplicative constant L due to the free energy difference between 
the two global states when all binding sites are empty, and also an extra multiplicative constant c for each 
substrate owing to the change in free energy when that substrate is bound to a site within the T state rather 
than the R state.  The total partition function is then  

ZGMWC = (1+ sq )n (1+ aq )n

q
∏ + L (1+ csq )n (1+ iq )n

q
∏  . 

From this form, we can see that the full production rate is proportional to the fraction of subunits 
at which all substrates are present and no inhibitor is present, which is:  

Yf =
[(1+ sq )n−1sq (1+ aq )n ]

q
∏ + L [(1+ csq )n−1(csq )(1+ iq )n−1]

q
∏

(1+ sq )n (1+ aq )n

q
∏ + L (1+ csq )n (1+ iq )n

q
∏

 . 

This is the form of the GMWC model we will use in our model here. A more detailed version of the 
model is also available to incorporate the effects of competitive inhibition at the substrate and activator 
binding sites: 
 

d[Pi ]
dt

= kcat [E]
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The detailed documentation of the GMWC model can be found in the Cellerator web site and the “Help” 
section in Cellerator. 
 
3.  PATHWAY MODELING  
 As discussed previously (1, 2), traditional approaches to model enzyme kinetic pathways mostly 
relied on Michaelis-Menten kinetic equation for one substrate/one product reactions and the King-Altman 
method to derive equations for complex multiple reactant reactions. In those studies, non-linear 
differential equations are simplified into linear algebra equations (14). On the other hand, 
kMech/Cellerator models include non-linear differential equations where complex enzyme mechanisms 
including single and multiple substrate enzyme kinetic reactions, and ligand activation and feedback 
inhibition mechanisms are taken into consideration.  
 
3.1 Bifunctional Aspartate Kinase I-Homoserine Dehydrogenase I 
       (AKI-HDHI) 
 AKI-HDHI is a bifunctional enzyme carrying both aspartate kinase (AKI) and homoserine 
dehydrogenase (HDHI) activities. It catalyzes two different steps of the same pathway. This bifunctional 
activity was modeled in a way that the binding of either substrate Asp or ASA shifts the equilibrium 
towards one of the activities, namely, the kinase or the dehydrogenase activity of the active (R) state of 
the enzyme, while binding of the inhibitor threonine to either one of the active (R) states shifts the 
equilibrium towards an inactive (T) state and binding of the substrates Asp and ASA shifts it back 
towards the active (R) state (Fig. 2).   
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Asp Thr ASA Thr 

THDHI

 
 
Fig.2 . A Model for the Bifunctional Enzyme AKI-HDHI. The diagram shows that the substrates Asp and ASA 
will trigger the switch to the kinase and the dehydrogenase activities of the enzyme respectively, while the inhibitor 
Thr will shift the equilibrium from the active (R) state of the enzyme to the inactive (T) state. Abbreviations used 
here are: RAKI, active state of Aspartate Kinase I; RHDHI, active state of Homoserine Dehydrogenase I; TAKI, inactive 
state of Aspartate Kinase I; THDHI, inactive state of Homoserine Dehydrogenase I; Asp, aspartate; ASA, aspartate 
semialdehyde; Thr, threonine. 
 

The GMWC inputs for the interchange between AKI kinase and HDHI dehydrogenase activities 
are described by the two reactions below: 

 

TAKI



 
 
On the other hand, the GMWC inputs for the interchange of AKI and HDHI between the active (R) and 
the inactive (T) state are the following: 
 

 

 
 
 

Cellerator translates the above GMWC models into the following equations that describe the 
fraction of substrate saturated enzyme (Yf) as a function of the substrate (Asp for AKI and ASA for HDHI 
respectively) and the inhibitor (Thr): 

 

  
 

 
 
 
3.2 Aspartate Kinase III (AKIII) 

AKIII is an allosteric enzyme inhibited by lysine and is also described by the GMWC model: 

 
 

Cellerator translates this model into the fraction of substrate saturated enzyme (Yf) as a function 
of the substrate (Asp) and the inhibitor (Lys): 



 

 
 
 
3.3 Aspartate Semialdehyde Dehydrogenase (ASD) 

This step catalyzed by ASD is a reversible two substrate/three products reaction (BiTri). Its 
kMech inputs are: 

 

 
  

The first kMech input is for the forward reaction, and the second kMech input is for the reverse 
reaction. The metabolites in the bracket on the left side of arrows are substrates, and on the right are 
products. Enzyme names are above the arrows. BiTri and TriBi indicate enzyme mechanisms. Variable 
names with a kf- prefix are rate constants of the enzyme-substrate associations; variable names with a kr- 
prefix are rate constants of the enzyme substrate dissociations; variable names with a kcat- prefix are 
catalytic rate constants for the formation of products. The detail description of how kMech parsing the 
enzyme models into association-dissociation reactions in Cellerator syntax, then translated into ODEs can 
be found in our previous publication (1) and web site listed above. 
 
3.4 Homoserine Kinase (HSK) 

The step catalyzed by HSK is a two substrate/two products reaction (BiBi) reaction competitively 
inhibited by threonine (Thr). Its kMech input is: 

 
  
CI indicates competitive inhibition. Thr is the competitive inhibitor that competes with substrate for the 
same binding site. Variable names with a kfi- prefix are rate constants of the enzyme-inhibitor associations; 
variable names with a kri- prefix are rate constants of the enzyme-inhibitor dissociations 
 
3.5 Threonine Synthase (TS) 

The last step is a simple one substrate/one product reaction catalyzed by TS. This basic enzyme 
model is provided by Cellerator: 

 

 
 



3.6 Consumption of Pathway Byproducts: 
 Some of the intermediates of the pathway like ASA, Hse and the end-product Thr are used as 
substrate in other amino acid synthesis pathways in E. coli. ASA is used for Lysine biosynthesis, Hse for 
methionine biosynthesis, and Thr for isoleucine biosynthesis. These consumptions were simulated with 
the Annihilation model in Cellerator as place holders for the future expansion: 

 
 
 
4.  RESULTS 
 
4.1 Data Fitting for the GMWC Model 

In order to apply the GMWC model to AKI, HDHI and AKIII, several parameters are required as 
described above. S, A, I, n, Km, Ka, and Ki, are usually available in literature. However, the values of c and 
L are often not available. Such values can be calculated by fitting substrate saturation curves in the 
presence and absence of various inhibitor concentrations (1, 15). Here, the c and L values for AKI, HDHI 
and AKIII were calculated by finding the minimum sum of squared differences between theoretical data 
and experimental data with the non-linear programming Mathematica function, FindMinimum and fitting 
data from inhibition curves in the presence of the substrate available in literature (16, 17). For example, 
the fractional saturation of AKIII in the presence of several concentrations of the inhibitor Lys and how 
this fits with data obtained from the literature is shown in Fig. 3. In this case and due to the lack of 
experimental data, we were limited to constructing our fitting curve using only one concentration of the 
substrate Asp and several concentrations of the inhibitor Lys. This fitting was sufficient for the 
calculation of the c and L values of AKIII. Mathematica notebooks fitting the experimental data of AKI, 
HDHI and AKIII, and computing the c and L values, respectively, are available online at our web site 
listed above. 
A. B. c

 
Fig.3 . Optimization of Physical Constants, c and L0, for the Concerted Transition Allosteric Monod, Wyman, 
and Changeux (MWC) Model. (A) Black dots represent experimental measurement of Yf values for E. coli 
Aspartate Kinase III with substrate (Aspartate, Asp) and various inhibitor (Lysine, Lys) concentrations. The solid 
line curves represent theoretical Yf values of calculated with c and L values determined from Panel B. (B) The error 
function (Err) is the sum of squared differences between experimental data (black dots) and theoretical Yf values 
calculated with values of c from 0 to 1, and L from 0 to 1800. The pair of c and L values that produce minimum 
errors are c=0.00005, L=1000. 
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4.2 Threonine Biosynthesis is Feedback Regulated by Threonine 
 To simulate constant flux, the first derivatives of substrates such as Asp, ATP and NADPH were 
set to zero. Relative enzyme concentrations were inferred from DNA Microarrays data. Initial 
concentrations of threonine and the intermediates Asp-P, ASA, Hse and Hse-P were set to zero. 
Substrates of the pathway were set to values of intracellular concentrations reported in literature, such as 
Asp whose initial concentration was set to 3600 µM (18).  Forward and reverse rate constants are 
approximated as described previously (1). The differential equations were solved by Mathematica and 
plots for the formation of intermediates and products versus time were generated. As shown in figure 4, 
the concentration of Asp was kept at steady state conditions as reported in literature (18). The 
concentrations of the other intermediates start at zero and reach a steady state level after a certain time has 
passed. At the beginning, a sharp rise in the concentrations of Asp-P, ASA, Hse and Hse-P is observed 
followed by a sharp rise in the concentration of threonine. This initial rise in the concentrations of Asp-P, 
ASA, Hse and Hse-P is followed by a sharp drop as soon as the concentration of threonine rises which 
demonstrates feedback inhibition mechanisms on AKI, HDHI and HSK by threonine. As a consequence, 
threonine levels start to drop and release inhibition partially as observed by small rises in the 
concentrations of intermediates (e.g. ASA) (Fig. 4). At the end, all metabolites reach their respective 
concentrations at steady state conditions. The intracellular concentration of threonine reported in literature 
is within the range of 290 to 520 µM (18, 19) which closely matches that seen in the simulation. 
 

 
Fig.4 . Simulation of Carbon Flow through the Threonine Biosynthesis Pathway. The graphical insets show the 
approach (minutes) to steady state (µM) synthesis and utilization of the substrates, intermediates, and end-products 
of the pathway. Abbreviations used here are: Asp, aspartate; AspP, Aspartyl phosphate; ASA, aspartate 
semialdehyde; Hse, homoserine; HseP, homoserine phosphate; Thr, threonine; AKI, aspartate kinase I; AKIII, 
aspartate kinase III; HDHI, homoserine dehydrogenase I; ASD, semialdehyde dehydrogenase; HSK, homoserine 
kinase; TS, threonine synthase. Feedback inhibition is indicated by dashed lines. Starting concentration of Aspartate 
is kept constant at 3600 µM. 
 
4.3 A Mathematical Model that Predicts the Partition of Enzyme 
Activities of a Bifunctional Enzyme  
 The allosteric bifunctional enzyme AKI-HDHI was modeled as described earlier in figure 2. The 
enzyme has the kinase and dehydrogenase activities and the switch to either activity depends on the 
amounts of substrate Asp or ASA available. The intracellular concentration of AKI-HDHI protein 
inferred from DNA Microarrays is 16 µM and in the model, each activity is given an initial concentration 
of 8 µM when both substrates are not present. As seen in figure 5, constant Asp (3600 µM) leads to a 
higher fraction of the enzyme having an AKI kinase activity initially. This fraction drops when the 
concentration of ASA (substrate for HDHI) increases. At the same time, an increase in the fraction of 
enzymes having the HDHI dehydrogenase activity is observed. The opposite effect is then observed when 
threonine feedback inhibition occurs. The partition of both enzyme activities stabilizes when the 
concentrations of both substrates reach steady states. The model predicts the fraction of enzyme having 
the kinase activity is around 15/16 while that of the fraction having the dehydrogenase activity is around 
1/16. This kind of prediction can be generally applied to other bifunctional enzymes which usually are 
important for the regulation of metabolic flux channeling. It would be very interesting and important if 



experimental work can be carried out to confirm these theoretical partitions for these regulatory enzymes, 
and to better understand how metabolic pathways are regulated by this type of regulation. 
 

 
Fig.5 . Simulation of the Fractional Activities of the Allosteric Bifunctional Enzyme Aspartate Kinase I-
Homoserine Dehydrogenase I. The total concentration of the enzyme used here is 16 µM and the concentration of 
aspartate is kept constant at 3600 µM. The data show the concentrations (µM) of both kinase and dehydrogenase 
activities as steady state is approached (minutes), where the fraction of enzyme having the kinase activity is around 
15/16 while that of the fraction having the dehydrogenase activity is around 1/16. 
 
5.  CONCLUSION 

To model the behavior of complex biological systems, we have elected a “bottom-up” approach 
that incorporates detailed enzyme kinetic and pathway-specific regulatory mechanisms from the literature 
into our model. Using kMech/Cellerator, models for enzyme mechanisms and their patterns of regulation 
are converted automatically into association-dissociation reactions, and then into differential equations. 
These equations are solved by Mathematica to simulate the model and generate the graphical output. In 
addition to simplifying the underlining mathematics of writing down differential equations, this approach 
allows us to examine the biochemical behavior of metabolites and enzyme states in the pathway with 
greater detail. Furthermore, the GMWC model expands our ability to simulate the behavior of allosteric 
enzymes and their feedback inhibition mechanisms through bindings of different substrates, activators 
and inhibitors. As demonstrated here, our simulation closely matches data in literature. In addition, the 
bifunctional enzyme model allows us to predict the partition of enzyme activities in the steady state, and 
new hypotheses and experimental designs can be generated through this type of prediction. Our approach 
is especially useful for modeling the key player for the regulation of a given pathways. 
 
 
ACKNOWLEDGEMENTS 
 This work was supported in part by the Biomedical Information Science and Technology 
Initiative (BISTI) grant (number 4 R33 GM069013) from the National Institue of General Medical 
Sciences, USA to Eric D. Mjolsness. Tarek Najdi and Chin-Rang Yang are trainees of the Biomedical 
Informatics Training (BIT) Program of the Univ. of California-Irvine Institute for Genomics and 
Bioinformatics, and the recipients of predoctoral and postdoctoral fellowships, respectively, from 
National Institutes of Health, National Research Service Award 5 T15 LM007443 from the National 
Library of Medicine, USA. 
 
 
 
 
 

20 40 60 80 100

5 
10 
15 
20 

µM 

min 

AKI 
HDHI 

 



6.  REFRENCES 
 

1. Yang CR, Shapiro BE, Mjolsness ED, Hatfield GW. An enzyme mechanism language for the 
mathematical modeling of biochemical pathways. Bioinformatics 2004 in press  

             (Advance Access published on October 27, 2004;  doi: 10.1093/bioinformatics/bti068) 
 

2. Yang CR, Shapiro BE, Hung SP, Mjolsness ED, Hatfield GW. A Mathematical Model of the 
Branched Chain Amino Acid Biosynthetic Pathways of Escherichia coli. 2004 submitted 

 
3. Monod J, Wyman J, Changeux JP. On the Nature Of Allosteric Transitions: A Plausible Model. J 

Mol Biol. 1965;12:88-118 
 
4. Janin J, Cohen GN. The threonine-sensitive homoserine dehydrogenase and aspartokinase 

activities of Escherichia coli K 12. A study of the allosteric equilibrium. Eur J Biochem. 
1969;11(3):520-9 

 
5. Chassagnole C, Rais B, Quentin E, Fell DA, Mazat JP. An integrated study of threonine-pathway 

enzyme kinetics in Escherichia coli. Biochem J. 2001;356(Pt 2):415-23 
 
6. Mazat JP, Patte JC. Lysine-sensitive aspartokinase of Escherichia coli K12. Synergy and 

autosynergy in an allosteric V system. Biochemistry. 1976;15(18):4053-8 
 
7. Karsten WE, Viola RE. Chemical and kinetic mechanisms of aspartate-beta-semialdehyde 

dehydrogenase from Escherichia coli. Biochim Biophys Acta. 1991;1077(2):209-19 
 
8. Shames SL, Wedler FC. Homoserine kinase of Escherichia coli: kinetic mechanism and inhibition 

by L-aspartate semialdehyde. Arch Biochem Biophys. 1984;235(2):359-70 
 
9. Szczesiul M, Wampler DE. Regulation of a metabolic system in vitro: synthesis of threonine from 

aspartic acid. Biochemistry. 1976;15(10):2236-44 
 
10. Shapiro, B.E., Levchenko, A., Meyerowitz, E.M., Wold, B.J. & Mjolsness, E.D. Cellerator: 

extending a computer algebra system to include biochemical arrows for signal transduction 
simulations. Bioinformatics 2003;19, 677-678 

 
11. Calhoun, D. H., Rimerman, R. A., and Hatfield, G. W. J Biol Chem 1973: 248, 3511-

3516 
 
12. Arfin, S. M., Long, A. D., Ito, E. T., Tolleri, L., Riehle, M. M., Paegle, E. S., and 

Hatfield, G. W. J Biol Chem 2000; 275: 29672-29684 
 
13. Hatfield, G. W., and Umbarger, H. E. J Biol Chem 1970: 245, 1742-1747 
 
14. Falk, S., A. Guay, C. Chenu, S. D. Patil and A. Berteloot (). Reduction of an eight-state 

mechanism of cotransport to a six-state model using a new computer program. Biophys J. 1998; 
74: 816-30 

 



15. Segel, I. H. (1993) Enzyme kinetics : behavior and analysis of rapid equilibrium and 
steady state enzyme systems, p427, equation(VII-66). Wiley Classics Library Ed., Wiley, 
New York 

 
16. Patte, JC, Bachi, PT, Cohen G. The threonine-sensitive homoserine dehydrogenase and 

aspartokinase activities of Escherichia coli. Evidence that the two activities are carried by a 
single protein. Biochem. Biophys. Acta. 1966: 128, 426-439 

 
17. Mazat JP, Patte JC. Lysine-sensitive aspartokinase of Escherichia coli K12. Synergy and 

autosynergy in an allosteric V system. Biochemistry. 1976 Sep 7;15(18):4053-8 
 
18. Quay SC, Dick TE, Oxender DL. Role of transport systems in amino acid metabolism: leucine 

toxicity and the branched-chain amino acid transport systems. J Bacteriol. 1977; 129(3):1257-65 
 
19. Epelbaum S, LaRossa RA, VanDyk TK, Elkayam T, Chipman DM, Barak Z. Branched-chain 

amino acid biosynthesis in Salmonella typhimurium: a quantitative analysis. J Bacteriol. 1998; 
180(16):4056-67 

 


