Introduction to Kernels (part III)
Application to Graphs, Molecular Structures, Chemistry

Liva Ralaivola
liva@ics.uci.edu

School of Information and Computer Science
Institute for Genomics and Bioinformatics
Outline

- Machine learning and graphs
- Quick reminders on graphs
- Naive/stupid kernels
- Convolution kernels
- Path/walk graph kernels
- Graph kernels based on powers of adjacency matrices
- Marginalized kernels (next session)
- Depth-first search kernels (next session)
Machine learning and graphs

- Problems
 - text processing problems (words viewed as vertices of graphs)
 - natural language processing (sentences viewed as trees)
 - digital image interpretation (different areas of one image are interpreted as vertices of a graph)
 - classification of chemical compounds (toxicity/non toxicity, activity/inactivity, etc.)

\[\mathcal{X} = \mathbb{N}^d, \mathbb{R}^d, \cdots \text{ sequences } \cdots \text{ graphs} \]

"easy" hard

\# methods

many few
Quick reminders on graphs (1/5)

Examples
Quick reminders on graphs (2/5)

- Focus: undirected labeled graphs
- A graph is made of
 - labeled vertices or nodes
 - labeled edges (connect nodes)
- For chemical compounds
 - atom/node labels: \(A = \{C, N, O, H, \ldots\} \)
 - bond/edge labels: \(B = \{s, d, t, ar, \ldots\} \)

Example: caffeine
Quick reminders on graphs
(3/5)

Notations

- $G = (\mathcal{V}, \mathcal{E})$, $\mathcal{V} = \{v_1, \ldots, v_{|\mathcal{V}|}\}$, $\mathcal{E} = \{e_1, \ldots, e_{|\mathcal{E}|}\}$,
- $n = |\mathcal{V}|$, number of vertices
- $m = |\mathcal{E}|$, number of edges
- $\text{label}(v_i) \in \mathcal{A} = \{\ell^a_1, \ldots, \ell^a_{|\mathcal{A}|}\}$
- $\text{label}(e_i) \in \mathcal{B} = \{\ell^b_1, \ldots, \ell^b_{|\mathcal{B}|}\}$

- E: $n \times n$ adjacency matrix
 - $E_{ij} = 1$ if and only if there is an edge between v_i and v_j
- L: $|\mathcal{A}| \times n$ vertex label matrix
 - $L_{ri} = 1$ if and only if $\text{label}(v_i) = \ell^b_r$
Quick reminders on graphs
(4/5)

\[A = \{C, N, O\}, \ |A| = 3 \]
\[B = \{s, d, t, ar\}, \ |B| = 4 \]

- Pyridine, \(n = 6, m = 6 \)

\[
E = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}, \quad L = \begin{pmatrix}
1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[label(v_1) = label(v_2) = label(v_3) = label(v_5) = label(v_6) = C, \quad label(v_4) = N \]
\[label(e_1) = label(e_2) = label(e_3) = label(e_4) = label(e_5) = label(e_6) = ar \]
Quick reminders on graphs (5/5)

\[A = \{C, N, O\}, \ |A| = 3 \]
\[B = \{s, d, t, ar\}, \ |B| = 4 \]

Furane
\(n = 5, \ m = 5 \)

\[
E = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}, \quad
L = \begin{pmatrix}
1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}
\]

\[
\text{label}(v_1) = \text{label}(v_2) = \text{label}(v_3) = \text{label}(v_5) = C, \quad \text{label}(v_4) = O
\]
\[
\text{label}(e_1) = \text{label}(e_2) = \text{label}(e_3) = \text{label}(e_4) = \text{label}(e_5) = ar
\]
Naive/stupid kernels

\[G_1 = (\mathcal{V}_1, \mathcal{E}_1), \ G_2 = (\mathcal{V}_2, \mathcal{E}_2) \]

- size dependent kernel (this is the stupid kernel !)

\[k(G_1, G_2) = n_1 n_2 + m_1 m_2 \]

feature map: \(\phi(G) = [n \ m]^\top \)

- kernel depending on the counts of labels

\[k(G_1, G_2) = \langle \phi_{\text{count}}(G_1), \phi_{\text{count}}(G_2) \rangle \]

with

\[\phi_{\text{count}} : \mathcal{G} \to \mathbb{R}^{|\mathcal{A}| + |\mathcal{B}|} \]

\[G \mapsto [\#C \ #N \ #O \ \cdots \ #s \ #d \ #t \ #ar]^\top \]
Convolution kernels

- The kernels defined previously don’t take the structure into account!!
- Solution: convolution kernels

\[k(G_1, G_2) = \sum_{s_1 \in S(G_1), s_2 \in S(G_2)} k_s(s_1, s_2) \]

where \(S(G) \) is a set of subgraphs of \(G \) and \(k_s \) a kernel defined on these subgraphs

- Idea similar to the spectrum kernels
- The quality of the kernel depends on \(S(G) \)
 - \(S(G) \) must retain as much information as possible on \(G \)
 - the enumeration of the elements of \(S(G) \) must be doable in a reasonable time
Walk/path based graph kernels

- A walk on a graph is a sequence of nodes and edges traversed on this graph

- Different kernel approaches
 - deterministic walks: kernels based on powers of some adjacency matrix
 - random walks: marginalized kernels
 - depth-first search walks: fast paths generation and Venn/Tanimoto kernels
Kernels based on powers of adjacency matrices

- \(G_1 = (\mathcal{V}_1, \mathcal{E}_1), G_2 = (\mathcal{V}_2, \mathcal{E}_2) \) two graphs
- Let \(\langle A, B \rangle = \sum_{i,j} A_{ij} B_{ij} \) for two matrices
- General formula for a kernel based on labeled pairs:

\[
k(G_1, G_2) = \left\langle L_1 \left(\sum_{i=0}^{\infty} \lambda_i E_1^i \right) L_1^\top, L_2 \left(\sum_{i=0}^{\infty} \lambda_i E_2^i \right) L_2^\top \right\rangle
\]

- Takes into account the number of paths of the same length having the same pair of first and last nodes
Kernels based on powers of adjacency matrices

- \(G_1 = (\mathcal{V}_1, \mathcal{E}_1), G_2 = (\mathcal{V}_2, \mathcal{E}_2) \) two graphs
- The direct graph product \(G_{\times} \) of \(G_1 \) and \(G_2 \) is defined as

\[
\mathcal{V}_{\times} = \{(v_1, v_2) \in \mathcal{V}_{\times}(G_{\times}) : (\text{label}(v_1) = \text{label}(v_2))\}
\]
\[
\mathcal{E}_{\times} = \{((u_1, u_2), (v_1, v_2)) \in \mathcal{E}_{\times}(G_{\times}) : (u_1, v_1) \in \mathcal{E}_1
\]
\[
\wedge (u_2, v_2) \in \mathcal{E}_2 \wedge (\text{label}(u_1, v_1) = \text{label}(u_2, v_2))\}\}

- For \(G_1 \) and \(G_2 \), we have \(k_{\times} \):

\[
k_{\times}(G_1, G_2) = \sum_{i,j=1}^{\mathcal{V}_\times} \left[\sum_{n=0}^{\infty} \lambda_n E_{\times}^n \right]_{ij}
\tag{1}
\]

- Counts the number of common sequences of labels in \(G_1 \) and \(G_2 \)
Conclusion

- Importance
 - convolution kernel
 - strategy to extract the subgraphs
 - efficiency
 - direct graph product
- To be continued