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Classifying things (1/2)

B Classification is a real-world task
B does some patient have a serious disease?

® what kind of secondary structure does a sequence of amino
acids correspond to?

M is some molecule toxic/not toxic for some organism?

B Automating this task
W dealing with large number of items to classify
M speed
M cost
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Classifying things (2/2)

B |[mportant notions in learning to classify

B limited number of training data (patients, sequences,
molecules, etc.)

M |earning algorithm (how to build the classifier?)
B generalization: the classifier should correctly classify rest data

® Quick formalization
m X (e.g. RY d > 0)is the space | X(=R?)
of data, called input space

m Y (e.g. toxic/not toxic, or
{—1,+1}) is the target space

W f: X — )Visthe classifier

® class +1
® class -1

—
-
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Vectors and inner product (1/3)

® u,v,w,c are vectors

B w=u-— v (red arrows)
Hc=.(u+v)

B Here:0< A<
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Vectors and inner product (2/3)

® Inner product (-,-) : X x X —» R:
B symmetric: (u,v) = (v, u)
® bilinear: (Au; + yuy) = A{uy, v) + y(uz, v)
® positive: (u,u) >0
i ® definite: (u,u) =0=u=0
B An inner product

W provides X with a structure
M can be viewed as a ‘similarity’

m defines a norm || - || on X: ||u|| = /(u,u)

B Example in R?

lu:[u1 ],Vz[vl ]:(u,v>:u1v1—|—u2v2
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Vectors and inner product (3/3)

Y

® (u-—v,e) >0: u—vand e point to the 'same direction’
B (u—v,f)=0:u—vandf are orthogonal
B (u-—v,g) <0:u-—vand g point to 'opposite directions’
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A simple linear classifier

A X(=R?) Hch = n;l+ D X
° (H) ® class +1 {i:y;=+1}
¢c‘ o e class -1 e — L Z <.
® e N o " {i:y,=-1} Z
C W
i x-‘//\.‘\;, Bc=(ct+¢)
%
Bw=ct—c~

—

B |dea (see [Scholkopf and Smola, 2002] for details): classify points
x according to which of the two class means c¢* or ¢~ is closer:

W for x € X, it is sufficient to take the sign of the inner product
between w and x — ¢

| if h(x) = (w,x — c), we have the classifier f(x) = sign (h(x))

m the (dotted) hyperplane (H), of normal vector w, is the
decision surface
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A simple linear classifier

1
A . C+ — m+ . z X’l
e class +1 {tyi=+1}
® class -1 _ 1
Bce =-- ) x
{iryi=—1}
Lo Bc=(ct+¢)
Bw=c —c

®m On evaluating h(x)

h(x) =(w,x —c) =(wW,x) — (W, C)

= (c",x) — {c7,x) — (c",c) + (c7,c)

Y (i, x) +b, with b areal constant
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A simple linear classifier

° (H ) | ® class +1

® class -1

B To summarize:

1=1
b XE=R)
Question: what if the dataset is not P B el
m linearly separable, i.e. (H) fails to
separate red and blue disks? SR

o
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The kernel trick (1/4)

® Context: nonlinearly separable dataset {(x1,v1),- .., (Xm, Ym)}

B |dea to learn a nonlinear classifier
® choose a (nonlinear) mapping ¢

b: X — H
X = ¢(x)

where H is an inner product space (inner product (-, -)%),
called feature space

® find a linear classifier (i.e. a separating hyperplane) in H to

classify {(¢(x1),v1), .-, (¢(Xm), Ym) }
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The kernel trick (2/4)

B Linearly classifying in feature space

input space X feature space H
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The kernel trick (3/4)

M The kernel trick can be applied if there is a function k : X x X - R
such that: k(u,v) = (¢(u), ¢(v))x
If so, all occurrences of (¢(x;), ¢(x))4 are replaced by k(x;, x)

B Keypoint: the focus’ is sometimes only on k£ and not on qb‘

B Kernels must verify Mercer’s property to be valid kernels

M ensures that there exist a space ‘H and a mapping ¢ : X — H
such that k(u, v) = (¢(u), $(v))x

B however non valid kernels have been used with success
M and, research is in progress on using non semi-definite kernels

B it might be viewed as a similarity measure
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The kernel trick (4/4)

input space X

feature space H

9.
® () ®
o ©® o ¢,
L °
° . o, ° °
°
® o o
® o
® o o
no separating hyperplane one possible separating hyperplane

B Kernel trick recipe

input space X

separating surface

M consider a nonlinear classification problemon X x Y
® choose a linear classification algorithm (expr. in terms (-, -))
® replace all occurrences of (-, -) by a kernel k(-, -)

B Obtained classifier:

f(x) = sign (

2.

i=1,...

, M

a;k(x;,X) + b)
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Common kernels (1/2)

B Gaussian kernel

W k(u,v) =exp (—M) , 02>0

552
M the corresponding H is of infinite dimension

B Polynomial kernel
B Ek(u,v)=((u,v)+c)? ceR,deN
B a corresponding analytic ¢ may be constructed (see below)

B Tangent kernel (it is not a Mercer kernel)
® k(u,v) =tanh(a{u,v) +c¢), a,ceR

Introduction to Kernel Methods (part I) — p.13



Common kernels (2/2)

W Let k = (u,v)2, (polynomial kernel with ¢ = 0 and d = 2) defined
on R? x R?
® Consider the mapping:

o : R? — R3

x = [1,T5] = P(x)= [x%’\/iwlw’x%]T

B We have, for u, v € R?:
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What to take home ?

m Classification
W appears in many real world problems
B can be done automatically
M generalization is important

B Kernels
® are wonderful !
® field of active, thrilling research
W classification of structured objects might be envisioned:
sequences: DNA strings, amino-acid strings, texts
= Kernels and appl. to sequences

graphs: structure of a molecule, disulfide bonds, GO
= Kernels and appl. to graphs and molecular structures

m fusion of heterogeneous information
= Combining Classifiers and Combining Kernels
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Miscellaneous information

B Contact information
® Liva Ralaivola

m Office CS/E 307
® Webpage (not really up to date): http://www.ics.uci.edu/ liva/

B Useful places/resources/links

m Kernel Club: every Friday starting Oct. 1%, 2004, 11:00am, CS
432

m Kernel Machines: http://www.kernel-machines.org/
® |Learning with Kernels: http://www.learning-with-kernels.org/
m SVM applet: http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
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