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Classifying things (1/2)

Classification is a real-world task
does some patient have a serious disease?
what kind of secondary structure does a sequence of amino
acids correspond to?
is some molecule toxic/not toxic for some organism?

Automating this task
dealing with large number of items to classify
speed
cost
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Classifying things (2/2)

Important notions in learning to classify
limited number of training data (patients, sequences,
molecules, etc.)
learning algorithm (how to build the classifier?)
generalization: the classifier should correctly classify test data

Quick formalization�

(e.g.

� �� � � �

) is the space
of data, called input space�

(e.g. toxic/not toxic, or�
	 � � � � 


) is the target space��� � � �
is the classifier ?

class +1
class -1

� ��� ��� �

� �� � � �
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Vectors and inner product (1/3)
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Vectors and inner product (2/3)

Inner product

798 � 8 : � �<; � � �

:
symmetric:

7 +� , : / 7 ,� + :

bilinear:

7 6 + 0 �>= + 1 : / 6 7 + 0 � , : � = 7 + 1 � , :

positive:

7 +� + :@? �

definite:

7 +� + : / � A +/ �
An inner product

provides

�

with a structure
can be viewed as a ’similarity’

defines a norm
B 8 B

on

�

:

B + B / 7 +� + :

Example in

� 1

+/
CED 0

D 1
F

, , /
CEG 0

G 1
F

:

7 +� , : / D 0G 0 �D 1G 1
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Vectors and inner product (3/3)
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7 + 	 ,� V : � �

: + 	 , and V point to the ’same direction’7 + 	 ,� W : / �
: + 	 , and

W

are orthogonal7 + 	 ,� X : 4 �
: + 	 , and X point to ’opposite directions’
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A simple linear classifier

class -1
class +1

Y Z\[ ] ^_

` a
b ` c

d
`

ef g

. h / 0i jkl m no p h 0 q
rl

. s / 0i t kl m no p s 0 q
rl

./ 01 2vu h � u s 3

-/ u h 	 u s

Idea (see [Schölkopf and Smola, 2002] for details): classify pointsr according to which of the two class means . h

or . s is closer:
for r w �

, it is sufficient to take the sign of the inner product
between - and r 	 .

if

x 2 r 3 / 7 -� r 	 . : , we have the classifier

� 2 r 3 / sign

2 x 2 r 3 3

the (dotted) hyperplane

2y 3

, of normal vector -, is the
decision surface
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A simple linear classifier

class -1
class +1

z {\| } ~�

� �
� � �

�
�

�� �

. h / 0i jkl m no p h 0 q
rl

. s / 0i t kl m no p s 0 q
rl

./ 01 2vu h � u s 3

-/ u h 	 u s

On evaluating

x 2 r 3

x 2 r 3 / 7 -� r 	 . : / 7 -� r : 	 7 -� . :

/ 7 . h � r : 	 7 . s � r : 	 7 . h � . : � 7 . s � . :

/
l p 0R�� � � � i

�l 7 rl � r : � �� with

�

a real constant
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A simple linear classifier

class -1
class +1

� �\� � ��

� �
� � �

�
�

�� �

. h / 0i jkl m no p h 0 q
rl

. s / 0i t kl m no p s 0 q
rl

./ 01 2vu h � u s 3

-/ u h 	 u s

To summarize:

x 2 r 3 / l p 0� � � � � i
�l 7 rl � r : � �

Question: what if the dataset is not
linearly separable, i.e.

2y 3

fails to
separate red and blue disks?

class -1
class +1

� ��� � � 
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The kernel trick (1/4)

Context: nonlinearly separable dataset

� 2 r 0 � ¡ 0 3 �¢ ¢ ¢ � 2 r i� ¡ i 3 


Idea to learn a nonlinear classifier
choose a (nonlinear) mapping

£

£� � � ¤

r ¥ � £ 2 r 3

where

¤

is an inner product space (inner product

798 � 8 :§¦ ),
called feature space
find a linear classifier (i.e. a separating hyperplane) in

¤

to
classify

� 2 £ 2 r 0 3 � ¡ 0 3 �¢ ¢ ¢ � 2 £ 2 r i 3 � ¡ i 3 
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The kernel trick (2/4)

Linearly classifying in feature space

¨ª©« ¬®­¯ ©° ±« ² © ³´¶µ ±­ ¬° ±« ² © · ¸
Taking the previous linear algorithm and implementing it in

¤

:

x 2 r 3 /
l p 0R�� � � � i

�l 7 £ 2 rl 3 � £ 2 r 3 :¦ � �
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The kernel trick (3/4)

The kernel trick can be applied if there is a function
¹�� �<; � � �

such that:

¹ 2 +� , 3 / 7 £ 2 + 3 � £ 2 , 3 :¦

If so, all occurrences of

7 £ 2 rl 3 � £ 2 r 3 :¦ are replaced by

¹ 2 rl � r 3

Keypoint: the ’focus’ is sometimes only on

¹
and not on

£

Kernels must verify Mercer’s property to be valid kernels
ensures that there exist a space

¤

and a mapping

£� � � ¤

such that

¹ 2 +� , 3 / 7 £ 2 + 3 � £ 2 , 3 :¦

however non valid kernels have been used with success
and, research is in progress on using non semi-definite kernels¹

might be viewed as a similarity measure
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The kernel trick (4/4)

separating surfaceone possible separating hyperplaneno separating hyperplane

º¼»½¾ ¿ÁÀ ½ ÂÃÄ Å º¼»½¾ ¿ÁÀ ½ ÂÃÄ ÅÆÄ Â ¿¾ ÇÄ À ½ ÂÃÄ ÈÉ

Kernel trick recipe
consider a nonlinear classification problem on

�; �

choose a linear classification algorithm (expr. in terms

798 � 8 :

)
replace all occurrences of

798 � 8 :

by a kernel

¹ 28 � 8 3

Obtained classifier:

� 2 r 3 / sign l p 0� � � � � i
�l ¹ 2 rl � r 3 � �
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Common kernels (1/2)

Gaussian kernel¹ 2 +� , 3 / ÊË Ì Í	 ÎÐÏ s Ñ Î Ò1ÔÓ Ò
Õ

� Ö 1 � �
the corresponding

¤

is of infinite dimension

Polynomial kernel¹ 2 +� , 3 / 2 7 +� , : � u 3 �� u w �� � w ×

a corresponding analytic
£

may be constructed (see below)

Tangent kernel (it is not a Mercer kernel)¹ 2 +� , 3 / ØÚÙÛ Ü 2vÝ 7 +� , : � u 3 � Ý � u w �
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Common kernels (2/2)

Let

¹/ 7 +� , : 1ßÞ Ò (polynomial kernel with u / �
and

�/ à

) defined
on

� 1 ; � 1

Consider the mapping:

£� � 1 � � á

r/ âvã 0 � ã 1 ä å ¥ � £ 2 r 3 / æ ã 1ç0 � à ã 0 ã 1 � ã 1ç1 è
å

We have, for +� , w � 1

:

7 £ 2 + 3 � £ 2 , 3 : Þ é / 7 âD 1ê0 � àD 0D 1 � D 1ê1 ä å � âG 10 � àG 0G 1 � G 11 ä å :

/ 2D 0G 0 �D 1G 1 3 1

/ 7 +� , : 1ëÞ Ò

/ ¹ 2 +� , 3
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What to take home ?

Classification
appears in many real world problems
can be done automatically
generalization is important

Kernels
are wonderful !
field of active, thrilling research
classification of structured objects might be envisioned:

sequences: DNA strings, amino-acid strings, textsA Kernels and appl. to sequences
graphs: structure of a molecule, disulfide bonds, GOA Kernels and appl. to graphs and molecular structures

fusion of heterogeneous informationA Combining Classifiers and Combining Kernels
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Miscellaneous information

Contact information
Liva Ralaivola
Office CS/E 307
Webpage (not really up to date): http://www.ics.uci.edu/˜liva/

Useful places/resources/links
Kernel Club: every Friday starting Oct.

�ì í

, 2004, 11:00am, CS
432
Kernel Machines: http://www.kernel-machines.org/
Learning with Kernels: http://www.learning-with-kernels.org/
SVM applet: http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
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Other references on my web page (soon)
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