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Outline

B Classifying sequences
B A rough scale on the difficulty to classify objects

® Gram matrices
B Combining Gram matrices to classify proteins

B Building sequence kernels
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Classifying sequences

B Problem of general interest

M classification of texts
W classification of music/sound/speech

M classification of web logs (user modeling)
| ...

B and of particular interest in bioinformatics

B remote homology detection between proteins from their
sequences of amino acids

M proteins structure prediction

® prediction of DNA splice sites
| ...
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A rough scale on classification
problems difficulty

# methods
many
—f
X= N/ R! ... sequences --- graphs
—
hard
difficulty

B Typical difficulties encountered with structured objects
B can be of various sizes
® no straightforward ways to do calculus

® no all-purpose similarities
...
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(Kernel) Gram matrices (1/2)

Bletk: X XX — R be aMercer kernel (XY may be a space of
sequences)

m for a set of patterns S = {x1,...,%x;}

k(Xlaxl) k(X17X2) k(XbXZ)
i Ko — k(X17X2) k(x27x2) ]C(Xz,Xg)
8 o e« o o e o o
| k(x1,%x¢) k(xe,x¢) -+ k(xe,Xp) |

is the Gram matrix of k£ with respect to S
W if corresponding targets v, ..., y, are available

= K is sufficient for any Kernel Machine to be trained
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(Kernel) Gram matrices (2/2)

B A property of the Gram matrix (Mercer’s property)

Proposition 1 (Semi-Positiveness of the Gram matrix). Let
k:X x X — R be asymmetric function.

k is a Mercer kernel <
i VS = {x1,...,x,},x; € X, vKsv > 0,Vv € R*

B This means that for any Mercer kernel k and any set of patterns S,
the Gram matrix Ks has only nonnegative eigenvalues

M This gives, in particular, £; and k; being Mercer kernels
m k7, p € Nis a Mercer kernel
W Ak, + vko, A,y > 0is a Mercer kernel
M k,ky Is a Mercer kernel
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Combining Gram matrices to
classify proteins (1/2)

B Reference: [Lanckriet et al., 2004]

B Problems addressed (a few thousands of yeast proteins)
M ribosomal protein classification
B membrane protein classification

H Method

B use of genome-wide data sets coded as similarity/Gram
matrices

B convex combination of these kernel functions
B Semi-definite programming and Support Vector Learning
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Combining Gram matrices to
classify proteins (2/2)

B Seven kernels used (all coming from some biological knowledge)

B Kow, Kp, Kpsam: based on amino acids sequence similarity
measures provided by state-of-the-art algorithms
(Smith-Waterman, BLAST and Pfam HMM)

B Krrr: aFast Fourier Transform-based kernel matrix using
hydropathy profiles of the proteins

B K, Kp: kernel matrices based on protein interaction
information

B Kg: asimilarity matrix based on microarray gene expression
measurements

B Omitting the technical details (SDP)
makernel K => u;K;, u; > 0,i=1,...,7is looked for

B at the same time an SVM classifier based on K is learned
M the results obtained are the best ever
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Building sequence kernels (1/4)

B Question: what if no such an 'exhaustive’ or relevant knowledge is
available?

B Answer: build you own sequence kernel

® How to do that?

W strong idea: comparing subsequences of sequences (cf.
convolution kernels [Haussler, 1999])

® another idea: Fisher kernels [Jaakkola and Haussler, 1998]
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Building sequence kernels (2/4)

B The spectrum kernel [Leslie et al., 2002]
W counts the number of common k-mers in two sequences
B computes a value from this counts
m for proteins: alphabet X2 of 20 symbols
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Building sequence kernels (2/4)

B The spectrum kernel [Leslie et al., 2002]
W counts the number of common k-mers in two sequences
B computes a value from this counts
m for proteins: alphabet X2 of 20 symbols

3 — me
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1

I3|F = 203 = 8000
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Building sequence kernels (2/4)

B The spectrum kernel [Leslie et al., 2002]
W counts the number of common k-mers in two sequences
B computes a value from this counts
m for proteins: alphabet X2 of 20 symbols

3 — mer

aabb

e
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Building sequence kernels (2/4)

B The spectrum kernel [Leslie et al., 2002]
W counts the number of common k-mers in two sequences
B computes a value from this counts
m for proteins: alphabet X2 of 20 symbols

!

1

3 — mer | k_ o903 _
LB = 20° = 8000
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Building sequence kernels (3/4)

B Computation of the spectrum kernel

m explicit construction of the feature space # = RI=I"

M feature vectors are very sparse (few nonzero elements)

B using a suffix tree structure [Ukkonen, 1995]
makes it possible to compute the kernels efficiently
makes it possible to manage space efficiently

B Results on a protein classification problem
B comparable to other methods (but not better)
W raises the need of another sequence kernel
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Building sequence kernels (4/4)

B Mismatch String Kernel [Leslie et al., 2003]
M based on idea of the spectrum kernel

W allows mismatches in £-mers comparisons
fork =3
i - spectrum kernel would consider the similarity between
aaa and aab as being O
- (3,1)-mismatch string kernel would assign a value>0 to
this similarity
B can use the suffix tree data structure for efficient computations

B Results on a protein classification task

M the use of this kernel with SVM outperformed the results of the
spectrum kernel

B and compared favorably to several state-of-the-art methods
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Conclusion

B Importance of

B Gram matrices
W combination of kernels (cf. Combining Classifiers and Combining

Kernels)
B Building kernels
B convolution and spectral kernels

B substructures enumeration
® complexity of kernel computation

B Fisher kernels (cf. presentation by a group a students ?)
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