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Outline

Classifying sequences

A rough scale on the difficulty to classify objects

Gram matrices
Combining Gram matrices to classify proteins

Building sequence kernels
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Classifying sequences

Problem of general interest
classification of texts
classification of music/sound/speech
classification of web logs (user modeling)
. . .

and of particular interest in bioinformatics
remote homology detection between proteins from their
sequences of amino acids
proteins structure prediction
prediction of DNA splice sites
. . .
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A rough scale on classification
problems difficulty

sequences graphs

difficulty

fewmany
# methods

hard"easy"
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Typical difficulties encountered with structured objects
can be of various sizes
no straightforward ways to do calculus
no all-purpose similarities
. . .
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(Kernel) Gram matrices (1/2)
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is the Gram matrix of
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with respect to
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if corresponding targets )� �� � � � )� are available* ��� is sufficient for any Kernel Machine to be trained
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(Kernel) Gram matrices (2/2)

A property of the Gram matrix (Mercer’s property)

Proposition 1 (Semi-Positiveness of the Gram matrix). Let� � �	� � 
 �

be a symmetric function.�

is a Mercer kernel +, �� � �� �� � � � ��� � � �.- / �

, 0 �1� 0 2 3 � , 0 / ��

This means that for any Mercer kernel

�

and any set of patterns

�

,
the Gram matrix

� � has only nonnegative eigenvalues

This gives, in particular,
�� and

�# being Mercer kernels� 4� � 5 / 6

is a Mercer kernel7 �� 8�9 �# � 7 �9 : 3 is a Mercer kernel�� �# is a Mercer kernel
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Combining Gram matrices to
classify proteins (1/2)

Reference: [Lanckriet et al., 2004]

Problems addressed (a few thousands of yeast proteins)
ribosomal protein classification
membrane protein classification

Method
use of genome-wide data sets coded as similarity/Gram
matrices
convex combination of these kernel functions
Semi-definite programming and Support Vector Learning
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Combining Gram matrices to
classify proteins (2/2)

Seven kernels used (all coming from some biological knowledge)�1; < � �>= � �>? @�AB : based on amino acids sequence similarity
measures provided by state-of-the-art algorithms
(Smith-Waterman, BLAST and Pfam HMM)�DC CE : a Fast Fourier Transform-based kernel matrix using
hydropathy profiles of the proteins�GFH � �GI : kernel matrices based on protein interaction
information�>J : a similarity matrix based on microarray gene expression
measurements

Omitting the technical details (SDP)
a kernel

�K L- �- � L- 2 3 � M  N �� � � � O is looked for
at the same time an SVM classifier based on

�

is learned
the results obtained are the best ever
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Building sequence kernels (1/4)

Question: what if no such an ’exhaustive’ or relevant knowledge is
available?
Answer: build you own sequence kernel

How to do that?
strong idea: comparing subsequences of sequences (cf.
convolution kernels [Haussler, 1999])
another idea: Fisher kernels [Jaakkola and Haussler, 1998]
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Building sequence kernels (2/4)

The spectrum kernel [Leslie et al., 2002]
counts the number of common

�

-mers in two sequences
computes a value from this counts
for proteins: alphabet

P

of

Q 3

symbols
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Building sequence kernels (2/4)

The spectrum kernel [Leslie et al., 2002]
counts the number of common

�

-mers in two sequences
computes a value from this counts
for proteins: alphabet

P

of

Q 3

symbols

aabbcbbecced

1
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Building sequence kernels (2/4)

The spectrum kernel [Leslie et al., 2002]
counts the number of common

�

-mers in two sequences
computes a value from this counts
for proteins: alphabet

P

of

Q 3

symbols

aabbcbbecced
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Building sequence kernels (2/4)

The spectrum kernel [Leslie et al., 2002]
counts the number of common

�

-mers in two sequences
computes a value from this counts
for proteins: alphabet

P

of

Q 3

symbols
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1
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Building sequence kernels (3/4)

Computation of the spectrum kernel

explicit construction of the feature space
z  � {| { }

feature vectors are very sparse (few nonzero elements)
using a suffix tree structure [Ukkonen, 1995]

makes it possible to compute the kernels efficiently
makes it possible to manage space efficiently

Results on a protein classification problem
comparable to other methods (but not better)
raises the need of another sequence kernel
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Building sequence kernels (4/4)

Mismatch String Kernel [Leslie et al., 2003]
based on idea of the spectrum kernel
allows mismatches in

�

-mers comparisons
for

�  ~

· spectrum kernel would consider the similarity between� � � and � � � as being 0
· (3,1)-mismatch string kernel would assign a value>0 to

this similarity
can use the suffix tree data structure for efficient computations

Results on a protein classification task
the use of this kernel with SVM outperformed the results of the
spectrum kernel
and compared favorably to several state-of-the-art methods
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Conclusion

Importance of
Gram matrices
combination of kernels (cf. Combining Classifiers and Combining
Kernels)

Building kernels
convolution and spectral kernels
substructures enumeration
complexity of kernel computation
Fisher kernels (cf. presentation by a group a students ?)
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