Introduction to Kernels (part II) Application to sequences

Liva Ralaivola

liva@ics.uci.edu

School of Information and Computer Science Institute for Genomics and Bioinformatics

Outline

- Classifying sequences
- A rough scale on the difficulty to classify objects
- Gram matrices
- Combining Gram matrices to classify proteins
- Building sequence kernels

Classifying sequences

Problem of general interest

- classification of texts
- classification of music/sound/speech
- classification of web logs (user modeling)
- . . .
- and of particular interest in bioinformatics
 - remote homology detection between proteins from their sequences of amino acids
 - proteins structure prediction
 - prediction of DNA splice sites

A rough scale on classification problems difficulty

(Kernel) Gram matrices (1/2)

- Let k : X × X → ℝ be a Mercer kernel (X may be a space of sequences)
 - for a set of patterns $\mathcal{S} = \{\mathbf{x}_1, \dots, \mathbf{x}_\ell\}$

$$K_{\mathcal{S}} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & k(\mathbf{x}_1, \mathbf{x}_2) & \cdots & k(\mathbf{x}_1, \mathbf{x}_\ell) \\ k(\mathbf{x}_1, \mathbf{x}_2) & k(\mathbf{x}_2, \mathbf{x}_2) & \cdots & k(\mathbf{x}_2, \mathbf{x}_\ell) \\ & \ddots & \ddots & \\ k(\mathbf{x}_1, \mathbf{x}_\ell) & k(\mathbf{x}_2, \mathbf{x}_\ell) & \cdots & k(\mathbf{x}_\ell, \mathbf{x}_\ell) \end{bmatrix}$$

is the Gram matrix of k with respect to Sif corresponding targets y_1, \ldots, y_ℓ are available

 $\Rightarrow K_{\mathcal{S}}$ is sufficient for any Kernel Machine to be trained

(Kernel) Gram matrices (2/2)

A property of the Gram matrix (Mercer's property)

Proposition 1 (Semi-Positiveness of the Gram matrix). Let $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a symmetric function. k is a Mercer kernel \Leftrightarrow $\forall \mathcal{S} = \{\mathbf{x}_1, \dots, \mathbf{x}_\ell\}, \mathbf{x}_i \in \mathcal{X}, \mathbf{v}K_{\mathcal{S}}\mathbf{v} > 0, \forall \mathbf{v} \in \mathbb{R}^\ell$

- This means that for any Mercer kernel k and any set of patterns S, the Gram matrix K_S has only nonnegative eigenvalues
- This gives, in particular, k_1 and k_2 being Mercer kernels
 - $k_1^p, \ p \in \mathbb{N}$ is a Mercer kernel
 - \blacksquare $\lambda k_1 + \gamma k_2, \ \lambda, \gamma > 0$ is a Mercer kernel
 - \blacksquare k_1k_2 is a Mercer kernel

Combining Gram matrices to classify proteins (1/2)

- Reference: [Lanckriet et al., 2004]
- Problems addressed (a few thousands of yeast proteins)
 - ribosomal protein classification
 - membrane protein classification
- Method
 - use of genome-wide data sets coded as similarity/Gram matrices
 - convex combination of these kernel functions
 - Semi-definite programming and Support Vector Learning

Combining Gram matrices to classify proteins (2/2)

Seven kernels used (all coming from some biological knowledge)

- K_{SW}, K_B, K_{Pfam}: based on amino acids sequence similarity measures provided by state-of-the-art algorithms (Smith-Waterman, BLAST and Pfam HMM)
- K_{FFT} : a Fast Fourier Transform-based kernel matrix using hydropathy profiles of the proteins
- K_{LI}, K_D : kernel matrices based on protein interaction information
- K_E : a similarity matrix based on microarray gene expression measurements
- Omitting the technical details (SDP)
 - a kernel $K = \sum \mu_i K_i, \ \mu_i \ge 0, i = 1, \dots, 7$ is looked for
 - at the same time an SVM classifier based on K is learned
 - the results obtained are the best ever

- Question: what if no such an 'exhaustive' or relevant knowledge is available?
- Answer: build you own sequence kernel
- How to do that?
 - strong idea: comparing subsequences of sequences (cf. convolution kernels [Haussler, 1999])
 - another idea: Fisher kernels [Jaakkola and Haussler, 1998]

- The spectrum kernel [Leslie et al., 2002]
 - counts the number of common k-mers in two sequences
 - computes a value from this counts
 - for proteins: alphabet Σ of 20 symbols

The spectrum kernel [Leslie et al., 2002]

- counts the number of common k-mers in two sequences
- computes a value from this counts
- for proteins: alphabet Σ of 20 symbols

The spectrum kernel [Leslie et al., 2002]

- counts the number of common k-mers in two sequences
- computes a value from this counts
- for proteins: alphabet Σ of 20 symbols

The spectrum kernel [Leslie et al., 2002]

- counts the number of common k-mers in two sequences
- computes a value from this counts
- for proteins: alphabet Σ of 20 symbols

Computation of the spectrum kernel

- explicit construction of the feature space $\mathcal{H} = \mathbb{R}^{|\Sigma|^k}$
- feature vectors are very sparse (few nonzero elements)
- using a suffix tree structure [Ukkonen, 1995]
 - makes it possible to compute the kernels efficiently
 - makes it possible to manage space efficiently

Results on a protein classification problem

- comparable to other methods (but not better)
- raises the need of another sequence kernel

- Mismatch String Kernel [Leslie et al., 2003]
 - based on idea of the spectrum kernel
 - **allows** mismatches in k-mers comparisons
 - I for k=3
 - spectrum kernel would consider the similarity between
 aaa and aab as being 0
 - (3,1)-mismatch string kernel would assign a value>0 to this similarity

can use the suffix tree data structure for efficient computations

- Results on a protein classification task
 - the use of this kernel with SVM outperformed the results of the spectrum kernel
 - and compared favorably to several state-of-the-art methods

Conclusion

Importance of

- Gram matrices
- combination of kernels (cf. Combining Classifiers and Combining Kernels)
- Building kernels
 - convolution and spectral kernels
 - substructures enumeration
 - complexity of kernel computation
 - Fisher kernels (cf. presentation by a group a students ?)

References

- [Haussler, 1999] Haussler, D. (1999). Convolution Kernels on Discrete Structures. Technical Report UCS-CRL-99-10, UC Santa Cruz.
- [Jaakkola and Haussler, 1998] Jaakkola, T. and Haussler, D. (1998). Exploiting generative models in discriminative classifiers. In *Adv. in Neural Information Processing Systems*, volume 11.
- [Lanckriet et al., 2004] Lanckriet, G. R. G., De Bie, T., Cristianini, N., Jordan, M. I., and Noble, W. S. (2004). A statistical framework for genomic data fusion. *Bioinformatics*.
- [Leslie et al., 2003] Leslie, C., Eskin, E., Cohen, A., Weston, J., and Noble, W. S. (2003). Mismatch string kernels for SVM protein classification. In *Adv. in Neural Information Processing Systems*, volume 15.
- [Leslie et al., 2002] Leslie, C., Eskin, E., and Noble, W. S. (2002). The spectrum kernel: A string kernel for svm protein classification. In *Proc. of the Pacific Symposium on Biocomputing*, 2002, pages 564–575.
- [Ukkonen, 1995] Ukkonen, E. (1995). On–line construction of suffix trees. *Algorithmica*, 14:249–60.