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Abstract

While eminently successful for the transmission of data, Shannon's theory of infor-

mation does not address semantic and subjective dimensions of data, such as relevance

and surprise. We propose an observer-dependent computational theory of surprise

where surprise is de�ned by the relative entropy between the prior and the posterior

distributions of an observer. Surprise requires integration over the space of models in

contrast with Shannon's entropy, which requires integration over the space of data. We

show how surprise can be computed exactly in a number of discrete and continuous

cases using distributions from the exponential family with conjugate priors. We show

that during sequential Bayesian learning, surprise decreases like 1=N and study how

surprise di�ers and complements Shannon's de�nition of information.

Keywords: Information, Surprise, Relevance, Bayesian Probabilities, Entropy, Relative

Entropy.

1 Introduction

The notion of information is central to science, technology, and many other human endeav-

ors. While several approaches for quantifying information have been proposed, the most

successful one so far has been Claude Shannon's de�nition introduced over half a century

ago [20, 18, 4, 8]. According to Shannon, the information contained in a data set D is given

by � logP (D), and the average information over all possible data sets D is the entropy

H(P (D)) = �
R
D P (D) logP (D)dD.

Although it has been eminently successful for the development of modern telecommu-

nication and computer technologies, Shannon's de�nition does not capture all aspects of
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information and comes with a number of shortcomings that may in part explain why the

theory has not been as successful as one would have hoped in other areas of science such as

biology, psychology, or economics.

A �rst concern is that it fails to account how data can have di�erent signi�cance for

di�erent observers. This is rooted in the origin of the probabilities used in the de�nition of

information. These probabilities are de�ned according to an observer or a model M which

Shannon does not describe explicitly so that the information in a data set is rather the

negative log-likelihood

I(D;M) = � logP (DjM) (1)

and the corresponding entropy is the average over all data sets

I(D;M) = H(P (DjM)) = �
Z
D
P (DjM) logP (DjM)dD (2)

As pointed out by Edward Jaynes ([14]), this observer is essentially the communication

engineer designing the communication system and, as such, M is �xed. However, not only

information ought to be a property of the data, it should also be highly dependent on

the observer, because the same data may carry completely di�erent meanings for di�erent

observers. Consider for instance the genomic DNA sequence of the AIDS virus. It is a string

of about 10,000 letters over the 4-letter DNA alphabet, of great signi�cance to researchers

in the biological or medical sciences, but utterly uninspiring to a layman. Within Shannon's

framework, one could consider two observers O1 and O2 (or two model classesM1 andM2)

with models M1 and M2 and assign information � logP (DjM1) and � logP (DjM2) to the

data relative to each model. This however remains unsatisfactory. In particular, even if

the two likelihoods were the same, the data D could carry di�erent amounts of information

for O1 and O2 depending on their expectations. Thus information ought to depend on the

observer and also on his expectations.

Indeed Shannon's theory of information explicitly ignores any notions of relevance or se-

mantics in the data. As pointed out in the title of Shannon's seminal article, it is a theory

of communication, in the sense of transmission rather than information. It concentrates on

the problem of \reproducing at one point either exactly or approximately a message selected

at another point" regardless of the relevance of the message. But there is clearly more to

information than data reproducibility and somehow information ought to depend also on the

model or hypothesis M , or rather on the class M of such models.

Shannon's theory also produces a well-known paradoxical e�ect that is often puzzling to

new students in information theory. How is it that \white snow", the most boring of all

television programs, carries the most Shannon information? On one hand, it is clear that

the uniform distribution has the highest entropy and reproducing a snow pattern exactly

requires a very large number of bits. On the other hand, producing \snow-like" patterns

is very easy. How can we reconcile the two viewpoints in a rigorous way? Notice that this

paradox has nothing to do with the complexity of the generative model being used. A high
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order Markov model of the television images would still make snow highly improbable and

therefore highly informative from Shannon's standpoint.

In short, there seems to be room for developing concepts of information that complement

or extend Shannon's de�nition. The main purpose here is to develop a computational theory

of subjective information surprise, or surprise. Surprise, no matter how one de�nes it, is

obviously related to Shannon's information: a rare event is in general surprising and ought

to carry a great deal of Shannon information due to its low probability. But beyond this

obvious relationship, a theory of surprise should to be able to measure information surprise

that is contained in data (1) in an observer-dependent way; (2) related to his changes in ex-

pectation; (3) through a de�nition that clearly establishes a connection with the foundations

of probability theory; and (4) clari�es the \white snow" paradox and related concerns.

If such a de�nition exists, it must �rst of all be related to the foundations of the notion of

probability, which can be approached from a frequentist or subjectivist, also called Bayesian,

point of view[3, 6]. Here we follow the Bayesian approach which has been prominent in recent

years and has led to important developments in many �elds [12, 10]. The de�nition we

propose stems directly from the Bayesian foundation of probability theory, and the relation

given by Bayes theorem between the prior and posterior probabilities of an observer (see also

[23]). The amount of surprise in the data for a given observer can be measured by looking

at the change that has taken place in going from the prior to the posterior probabilities.

2 Information and Surprise

In the subjectivist framework, degrees of belief or con�dence are associated with hypotheses

or models. It can be shown that under a small set of reasonable axioms, these degrees of

belief can be represented by real numbers and that when rescaled to the [0,1] interval these

degrees of con�dence must obey the rules of probability and in particular Bayes theorem

[9, 19, 15]. Speci�cally, if an observer has a model M for the data, associated with a prior

probability P (M), the arrival of a data set D leads to a reevaluation of the probability in

terms of the posterior distribution

P (M jD) =
P (DjM)P (M)

P (D)
(3)

The e�ect of the information contained in D is clearly to change the belief of the observer

from P (M) to P (M jD). Thus, a complementary way of measuring information carried by

the data D is to measure the distance between the prior and the posterior. To distinguish it

from Shannon's communication information, we call this notion of information the surprise

information or surprise

S(D;M) = d[P (M); P (M jD)] (4)

where d is a distance or similarity measure. There are di�erent ways of measuring a distance

between probability distributions. In what follows, for standard well known theoretical rea-
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sons (including invariance with respect to reparameterizations), we use the relative entropy

or Kullback-Liebler [17] divergence K which is not symmetric and hence not a distance. This

lack of symmetry, however, does not matter in most cases and in principle can easily be �xed

by symmetrization of the divergence. The surprise then is

S(D;M) = K(P (M); P (M jD)) =

Z
M
P (M) log

P (M)

P (M jD)
dM

= �H(P (M))�
Z
P (M) logP (M jD)dM

= logP (D)�
Z
M
P (M) logP (DjM)dM (5)

Alternatively, we can de�ne the single model surprise by the log-odd ratio

S(D;M) = log
P (M)

P (M jD)
(6)

and the surprise by its average

S(D;M) =

Z
M
S(D;M)P (M)dM (7)

taken with respect to the prior distribution over the model class. In statistical mechanics

terminology, the surprise can also be viewed as the free energy of the negative log-posterior

at a temperature t = 1, with respect to the prior distribution over the space of models [2].

Note that this de�nition addresses the \white snow" paradox. At the time of snow onset,

the image distribution we expect and the image we perceive are very di�erent and therefore

the snow carries a great deal of both surprise and Shannon's information. Indeed snow

may be a sign of storm, earthquake, toddler's curiosity, or military putsch. But after a

few seconds, once our model of the image shifts towards a snow model of random pixels,

television snow perfectly �ts the prior and hence becomes boring. Since the prior and

the posterior are virtually identical, snow frames carry 0 surprise although megabytes of

Shannon's information.

The similarities and di�erences of surprise with Shannon's information should now be

clear|in particular, surprise is a dual notion that requires integration over the space of

models rather than the space of data. In the next sections, we show how this integration

can be carried analytically in simple cases. As is the case for Bayesian inference, however,

integration over the space of models in general is likely to require Monte Carlo methods.

Information is also bound to vary when data is received sequentially, i.e. during learning

processes. Therefore we also show how the proposed de�nition is related to the behavior of

learning curves. Details of calculations are provided in the Appendix.
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3 Computation of Surprise

Here we consider a data set D = fx1; : : : ; xNg containing N points. Surprise can be cal-

culated exactly in a number of interesting cases. For simplicity, although this does not

correspond to any restriction of the general theory, we consider only the case of conjugate

priors, where the prior and the posterior have the same functional form. In this case, in

order to compute the surprise de�ned by Equation 5, we need only to compute general terms

of the form

F (P1; P2) =

Z
P1 logP2dx (8)

where P1 and P2 have the same functional form. The surprise is then given by

S = F (P1; P1)� F (P1; P2) (9)

where P1 is the prior and P2 is the posterior. Note also that in this case the symmetric

divergence can easily be computed using F (P1; P1) � F (P1; P2) + F (P2; P2) � F (P2; P1).

Details for the calculation of F (P1; P2) in the examples below are given in the Appendix. It

should also be clear that in simple cases, for instance for certain members of the exponential

family [7] of distributions, the posterior depends entirely on the su�cient statistics and

therefore we can expect surprise also to depend only on su�cient statistics in these cases.

3.1 Discrete Data and Dirichlet Model

Consider the case where xi is binary. The simplest class of models for D is then M(p), the

�rst order Markov models with a single parameter p representing the probability of emitting

a 1. The conjugate prior on p is the Dirichlet prior (or beta distribution in the 2-D case)

D1(a1; b1) =
�(a1 + b1)

�(a1)�(b1)
xa1�1(1� x)b1�1 = C1x

a1�1(1� x)b1�1 (10)

with a1 � 0, b1 � 0, and a1 + b1 > 0. The expectation is a1=(a1 + b1); b1=(a1 + b1). With n

sucesses in the sequence D, the posterior is a Dirichlet distribution D2(a2; b2) with [2]

a2 = a1 + n and b2 = b1 + (N � n) (11)

The surprise can be computed exactly

S(D;M) = K((D1; D2)) = log
C1

C2

+n[	(a1+b1)�	(a1)]+(N�n)[	(a1+b1)�	(b1)] (12)

where 	 is the derivative of the logarithm of the Gamma function (see Appendix). When

N !1, and n = pN with 0 < p < 1 we have

S(D;M) � NK(p; a1) (13)
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where K(p; a1) represents the Kullback-Liebler divergence distance between the empirical

distribution (p; 1 � p) and the expectation of the prior (a1=(a1 + b1); b1=(a1 + b1)). Thus

asymptotically surprise information grows linearly with the number of data points with a

proportionality coe�cient that depends on the discrepancy between the expectation of the

prior and the observed distribution. The same relationship can be expected to be true in

the case of a multinomial model. In the case of a symmetric prior (a1 = b1), a slightly more

precise approximation is provided by:

S(D1; D2) � N [
2a1�1X
k=a1

1

k
�H(p)] (14)

For instance, when a1 = 1 then R(D1; D2) � N(1 � H(p)), and when a1 = 5 then

R(D1; D2) � N [0:746�H(p)].

These results provide a clear explanation for the television \snow" e�ect. With a uniform

symmetric prior, the empirical distribution with maximal entropy brings the least informa-

tion. If we expect snow, the Kullback-Liebler divergence between the prior and the posterior

is 0 and therefore there is essentially no surprise in the signal. As pointed out, this is not

the case, however, at the time of onset of the snow where the divergence may even be large.

3.2 Continuous Data: Unknown Mean/Known Variance

When the xi are real, we can consider �rst the case of unknown mean with known variance.

We have a family M(�) of models, with a Gaussian prior G1(�1; �
2
1). If the data has known

variance �2, then the posterior distribution is Gaussian G2(�2; �
2
2) with parameters given by

[10]

�2 =

�1
�2
1

+ N �m
�2

1
�2
1

+ N
�2

and
1

�22
=

1

�21
+
N

�2
(15)

where �m is the observed mean. In the general case

S(D;M) = KG1; G2) = log
�q

�2 +N�21

+N
�21
2�2

+
N2�21(�1 � �m)2

2�2(�2 +N�21

�
N

2�2
[�21 + (�1 � �m)2] (16)

the approximation being valid for large N . In the special case where the prior has the same

variance has the data �1 = � then the formula simplify a little and yield

S = K(G1; G2) =
N

2
�

1

2
log(N + 1) +

N2(�1 � �m)2

2(N + 1)�2
�

N

2�2
[�2 + (�1 � �m)2] (17)
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when N is large. In any case, surprise grows linearly with N with a coe�cient that is the

sum of the prior variance and the square di�erence between the expected mean and the

empirical mean scaled by the variance of the data.

3.3 Continuous Data: Unknown Variance/Known Mean

When the xi are real, we can then consider the case of unknown variance with known mean.

We have a family M(�2) of models, with a conjugate scaled inverse gamma prior

�1(�1; s1) =
(�1
2
)�1=2s�11

�(�1
2
)

(�2)�(
�1
2
+1)e�

�1s
2
1

2�2 d�2 = C1(�
2)�(

�1
2
+1)e�

�1s
2
1

2�2 d�2 (18)

The posterior is then a scaled inverse gamma distribution [10] with

�2 = �1 +N and s22 =
�1s

2
1 +N ��2

�1 +N
(19)

Here ��2 =
P
(xi�m)2=N is the observed variance, based on the known meanm. The surprise

S(D;M) = K(�1;�2) = log
C1

C2

�
N

2
[	(

�

2
) + log

2

�1s
2
1

] +
N ��2

2s21
(20)

For large values of N ,

S = K(�1;�2) �
N

2
[
��2

s21
+ log

�1s
2
1

2��2
� 	(

�1

2
)] (21)

Thus surprise information scales linearly with N , with a coe�cient of proportionality that

typically depends mostly on the ratio of the empirical variance to the scale parameters s21,

which is roughly the expectation of the prior [the expectation of the prior is �1s
2
1=(�1 � 2)

provided �1 > 2]. The e�ects of very large of very small values of ��, or �1 can also be seen

in the formula above. In particular, surprise is largest when the empirical variance ��2 goes

to 0 or in�nity, i.e. is very di�erent from the prior expectation.

3.4 Continuous Data: Unknown Mean/Unknown Variance

When the xi are real, we can �nally consider the case of unknown mean with unknown vari-

ance. We have a familyM(�; �2) of models, with a conjugate prior G1�1 = P (�j�2)P (�2) =
G1(�1; �

2=�1)�1(�1; s1), product of a normal with a scaled inverse gamnma distribution.

Thus the prior has four parameters (�1; �1; �1; s1), with �1 > 0, �1 > 0, and s1 > 0. The

conjugate posterior has the same form, with similar parameters (�2; �2; �2; s2) satisfying (see

for instance [10])

�2 =
�1

�1 +N
�1 +

N

�1 +N
�m (22)
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�2 = �1 +N (23)

�2 = �1 +N (24)

�2s
2
2 = �1s

2
1 + (N � 1)��2 +

�1N

�1 +N
( �m� �1)

2 (25)

with �m =
P
xi=N and ��2 =

P
(xi � �m)2=(N � 1). The surprise is

S(D;M) = K(G1�1; G2�2) =
1

2
log

�1

�1 +N
+

N

2�1
+
�1 +N

2

�
N( �m� �1)

(�1 +N)s1

�2
+

log
C1

C2

+ �
N

2
[	(

�1

2
) + log

2

�1s
2
1

] +
(N � 1)��2 + �1N

�1+N
( �m� �1)

2

2s21
(26)

For large values of N ,

R(G1�1; G2�2) �
N

2
[
1

�1
+

��2

s21
+ log

�1s
2
1

2��2
� 	(

�1

2
) +

( �m� �1)
2

s21
] (27)

Surprise information is linear in N with a coe�cient that is essentially the sum of the

coe�cients derived in the unknown mean and unknown variance partial cases.

4 Learning and Surprise

There is an immediate connection between surprise and computational learning theory. If

we imagine that data points from a training set are presented sequentially, we can consider

that the posterior distribution after the N -th point becomes the prior for the next iteration

(sequential Bayesian learning). In this case we can expect on average surprise to decrease

after each iteration, since as a system learns what is relevant in a data set, new data points

become less and less surprising. This can be quanti�ed precisely, at least in simple cases.

4.1 Learning Curves: Discrete Data

Consider �rst a sequence of 0-1 examples D = (dN). The learner starts with a Dirichlet prior

D0(a0; b0). With each example dN , the learner updates its Dirichlet prior DN(aN ; bN) into

a Dirichlet posterior DN+1(aN+1; bN+1) with (aN+1; bN+1) = (aN + 1; bN ) if dN+1 = 1, and

(aN+1; bN+1) = (aN ; bN + 1) otherwise. When dN+1 = 1, the corresponding surprise is easily

computed using Equations 45 and 48. For simplicity, and without much loss of generality,

let us assume that a0 and b0 are integers, so that aN and bN are also integers for any N .

Then if dN+1 = 1 the relative surprise is

S(DN ; DN+1) = log
aN

aN + bN
+

bN�1X
k=0

1

aN + k
(28)
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and similarly in the case dN+1 = 0 by interchanging the role of aN and bN . Thus, in this

case,

0 � S(DN ; DN+1) �
1

aN
+ log(1�

1

aN + bN
) (29)

Asymptotically we have aN � a0 + pN and therefore

0 � S(DN ; DN+1) �
1� p

pN
(30)

Thus surprise decreases in time with the number of examples as 1=N .

4.2 Learning Curves: Continuous Data

In the case of continuous Gaussian data with, for instance, known variance �2, the learner

starts with a Gaussian prior G0(�0; �
2
0) on the mean. With each example dN , the learner

updates its Gaussian prior GN(�N ; �
2
N) into a Gaussian posterior GN+1(�N+1; �

2
N+1) with

�N+1 =

�N
�2
N

+
dN+1

�2

1
�2
N

+ 1
�2

and
1

�2N+1

=
1

�2N
+

1

�2
(31)

From Equation 16, the relative surprise is

S(GN ; GN+1) = log
�q

�2 + �2n
+

�2N
2�2

(1 +
(�N � dN+1)

2

�2 + �2N
) (32)

Asymptotically

S(GN ; GN+1) �
�2N
2�2

(33)

From Equation 15, we have 1
�2
N+1

= 1
�2
0

+ (N+1)

�2
, or �2N+1 =

�2
0
�2

�2+(N+1)�2
0

. Thus

0 � S(GN ; GN+1) �
1

2(N + 1)
(34)

Thus in this case surprise decreases in time with the number of examples also as 1=N .

5 Surprise, Evidence, and Mutual Information

To measure the e�ect of the data on the prior and the posterior, one could have envisioned

using the di�erence between the entropy of the prior and the entropy of the posterior.

However, unlike surprise which is always positive, the di�erence between these two entropies

can be either positive or negative and therefore is not a suitable measure.
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In the formula given above for the surprise (Equation 5), we have introduced the evidence

P (D) = P (DjM) =
R
M P (M;D)dM . The evidence plays a key role in Bayesian analyis and

is the hinge that leads to the next cycle of Bayesian analysis beyond the class of modelsM.

Shannon's information could be de�ned with respect to the evidence in the form

I(D;M) = � logP (DjM) (35)

with the associated evidence entropy

I(D;M) = �
Z
D
P (DjM) logP (DjM)dD (36)

For a �xed data set D, the surprise is

S(D;M) = �I(D;M) +

Z
M
P (M)I(D;M)dM (37)

is therefore the di�erence between the average Shannon information per model, taken with

respect to the prior, and the Shannon information based on the evidence.

If we integrate the surprise with respect to the evidence

Z
D
P (D)S(D;M)dD =

Z
D;M

P (D)P (M) log
P (D)P (M)

P (D;M)
dDdM (38)

we get the Kullback-Liebler divergence K(P (D)P (M); P (D;M)) which is the symmetric in-

verse of the mutual informationMI between D andMMI(D;M) = K(P (D;M); P (D)P (M)).

6 Discussion and Extensions

Surprise is di�erent from other de�nitions of information that have been proposed [1] as

alternatives to Shannon's entropy. Most alternative de�nitions, such as R�enyi's entropies,

are actually algebraic variations on Shannon's de�nition rather than conceptually di�erent

approaches. While Shannon's de�nition �xes the model and varies the data, surprise �xes

the data and varies the model. Surprise is a measure of dissimilarity between the prior

and posterior distributions and as such it lies close to the axiomatic foundation of Bayesian

probability.

In a number of cases, surprise can be computed analytically both in terms of exact and

asymptotic formula. The analytical results presented here could be extended in several direc-

tions including non-conjugate and other prior distributions, more complex multidimensional

distributions (e.g. multinomial, inverse Wishart), and more general families of distributions

(e.g. exponential family [7]). In general, however, the computation of surprise can be ex-

pected to require Monte Carlo methods to approximate integrals over model spaces. In

this respect, the computation of surprise should bene�t from progress in this active area of

research as well as increase in computing power.
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While applications remain to be developed, a theory of surprise could be used in areas

as diverse as game theory, machine learning, Internet commerce, and the design of sensory

systems. Consider, for instance, the design of arti�cial sensory systems or the reverse en-

gineering of natural ones. Clearly, attention mechanisms play a fundamental role allowing

perceptual systems to shift their resources and bring them to bear on the most surprising

region of the input space. In both natural systems and some of their arti�cial cousins, ex-

pectations could be generated by top down connections and compared in real time with

input streams generated by bottom up connections [13]. Mismatches between input and

expectations could be computed using surprise theory and lead to saliency maps. These

maps in turn could guide attentional mechanisms, whereby additional processing resources

are dynamically allocated to the regions of the input �eld that are the most surprising, i.e.

which carry the highest amount of information with respect to the expectations.

Likewise, we have only touched upon the connection between surprise and machine learning

[22] by showing that surprise decreases as 1=N during sequential learning in simple cases.

This analysis could be extended to more complex settings, such as arti�cial neural networks.

But the notion of surprise has its own limitations. In particular, it does not capture all the

semantics/relevance aspects of data. When the degree of surprise of the data with respect

to the model class becomes low, the data is no longer informative for the given model class.

This, however, does not necessarily imply that one has a good model since the model class

itself could be unsatisfactory and in need of a complete overhaul. The process by which

we decide a model is unsatisfactory in an alternative free setting, the open-ended aspect of

inference, remains elusive to modeling.

Conversely, highly surprising data could be a sign that learning is required or that the

data is irrelevant. If while sur�ng the web in search of a car one stumbles on a picture of

Marilyn Monroe, the picture may carry a low degree of relevance, a high degree of surprise,

and a low-to-high amount of Shannon information depending on the pixel structure. Thus,

relevance, surprise, and Shannon's entropy are three di�erent facets of information that can

be present in di�erent combinations. The notion of relevance in particular seems to be the

least understood although there have been several attempts [16, 21]. A possible direction

is to consider, in addition to the space of data and models, a third space A of actions or

interpretations and de�ne relevance as the relative entropy between the prior P (A) and the

posterior P (AjD) distributions over A. Whether this approach simply shifts the problem

into the de�nition of the set A remains to be seen. In any event, the quest to understand

the nature of information is unlikely to be over.

Appendix A: Discrete Case

In the two-dimensional case, consider two Dirichlet distributions D1 = D(a1; b1)(x) =

C1x
a1�1(1�x)b1�1 andD2 = D(a2; b2)(x) = C2x

a2�1(1�x)b2�1, with C1 = �(a1+b1)=�(a1)�(b1),

and similarly for C2. To calculate the relative entropy in the two dimensional case, we use

the formula ([11]
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Z 1

0
xu�1(1� x)v�1 logxdx = B(u; v)[	(u)�	(u+ v)] (39)

where B(u; v) is the beta function B(u; v) =
R 1
0 x

u�1(1� x)v�1dx = �(u)�(v)=�(u+ v) and

	(x) is the derivative of the logarithm of the gamma function 	(x) = d(log �(x))=dx. A

cross term of the form F (D1; D2)

F (D1; D2) =

Z 1

0
C1x

a1�1(1� x)b1�1[logC2 + (a2 � 1) logx + (b2 � 1) log(1� x)] (40)

is equal to

F (D1; D2) = logC2 + (a2 � 1)[	(a1)� 	(a1 + b1)] + (b2 � 1)[	(b1)� 	(a1 + b1)] (41)

using the fact that C1B(a1; b1) = 1. In particular, the entropy of a two-dimensional Dirich-

let distribution such as D1 is obtained by taking: �F (D1; D1). With some algebra, the

Kullback-Liebler divergence between any two Dirichlet distributions is �nally given by:

K(D1; D2) = log
C1

C2

+ (a1 � a2)[	(a1)� 	(a1 + b1)] + (b1 � b2)[	(b1)� 	(a1 + b1)] (42)

With n successes in the sequence D, the posterior is a Dirichlet distribution D2(a2; b2) with

[2]

a2 = a1 + n and b2 = b1 + (N � n) (43)

Using this relation between the prior and the posterior, we get the surprise

S(D1; D2) = log
C1

C2

+ n[	(a1 + b1)� 	(a1)] + (N � n)[	(a1 + b1)�	(b1)] (44)

Using the general fact that 	(x)�	(y) =
P1

k=0(
1

y+k
� 1

x+k
), which implies 	(x+n)�	(x) =Pn�1

k=0
1

x+k
when n is an integer, we get

S(D1; D2) = log
C1

C2

+n(
1X
k=0

1

a1 + k
�

1

a1 + b1 + k
)+ (N �n)(

1X
k=0

1

b1 + k
�

1

a1 + b1 + k
) (45)

Now we have

1X
k=0

(
1

a1 + k
�

1

a1 + b1 + k
) =

bb1c�1X
k=0

(
1

a1 + k
) + Rest (46)

where

12



0 � Rest =
1X
k=0

(
1

a1 + bb1c+ k
�

1

a1 + b1 + k
) � (b1 � bb1c)

1X
k=0

1

(a1 + bb1c + k)2
(47)

and similarly for the symmetric term. The rest is exactly 0 when a1 and b1 (and hence a2
abd b2) are integers, and in general decreases with the size of a1 and b1. This yields the

approximation

S(D1; D2) � log
C1

C2

+ n(

bb1c�1X
k=0

1

a1 + k
) + (N � n)(

ba1c�1X
k=0

1

b1 + k
) (48)

This approximation is exact when a1 and b1 are integers. Now for x > 0 we have log((x +

n)=x) <
Pn�1

k=0 1=(x+k) < log((x+n�1)=x)+1=x or 0 <
Pn�1

k=0 1=(x+k)�log((x+n)=x) < 1=x.

Thus,

S(D1; D2) � log
C1

C2

+ n log
a1 + b1

a1
+ (N � n) log

a1 + b1

b1
(49)

Now we have,

log
C1

C2

= log
�(a1 + b1)�(a2)�(b2)

�(a1)�(b1)�(a2 + b2)

= log
(a1 + n� 1)(a1 + n� 2) : : : a(b1 +N � n� 1) : : : b1

(a1 + b1 +N � 1)(a1 + b1 +N � 2) : : : (a1 + b1)
(50)

We can use bounds of the form log a +
R a1+n1
a1

logxdx < log a1 + : : : log(a1 + n � 1) �
log a1

R a1+n
a1+1

logxdx to estimate this term. Alternatively, one can assume that a1 and b1
are integers and use binomial coe�cient approximations, such as those in [5]. In all cases,

neglecting constant terms and terms of order logN , if we let n = pN (0 < p < 1) and N go

to in�nity we have

log
C1

C2

� � log

 
N

n

!
� �NH(p)) (51)

where H(p) is the entropy of the (p; q) distribution with q = 1� p. Thus when N !1, and

n = pN with 0 < p < 1 we have

S(D1; D2) � N [p log
a1 + b1

a1
+ q log

a1 + b1

b1
�H(p)] � NK(p; a1) (52)

where K(p; a1) is the relative entropy between the empirical distribution (p; q) and the ex-

pectation of the prior ( a1
a1+b1

; b1
a1+b1

). Thus, asymptotically surprise grows linearly with the

number of data points with a proportionality coe�cient that depends on the discrepancy

between the expectation of the prior and the observed distribution. The same relationship

can be expected to be true in the case of a multinomial model.
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Symmetric Prior (a1 = b1)

Consider now the case of a symmetric prior, then

S(D1; D2) = log
C1

C2

+N [	(2a1)�	(a1)] (53)

Using formulas in [11], 	(2a1)�	(a1) =
P1

k=0
(�1)k

2a1+k
+ log 2 thus

S(D1; D2)) = log
C1

C2

+N
1X
k=0

(�1)k

2a1 + k
+ log 2 � N [

1X
k=0

(�1)k

2a1 + k
+ log 2�H(p)] (54)

the approximation being in the regime n = pN and N !1. When a1 is an integer, we also

have 	(2a1)� 	(a1) =
P2a1�1

k=1 (�1)k+1=k =
P2a1�1

k=a1
1=k. Thus when a1 is an integer

S(D1; D2) = N [
2a1�1X
k=a1

1

k
] + log

(2a1 � 1)
�
2a1�2

a1�1

�
(2a1 +N � 1)

�
N+2a1�2

n+a1�1

� (55)

As N !1 with 0 < p < 1

S(D1; D2) � N [
2a1�1X
k=a1

1

k
]� log

 
N + 2a1 � 2

n + a1 � 1

!
� N [

2a1�1X
k=a1

1

k
]� log

 
N

n

!
(56)

and therefore

S(D1; D2) � N [
2a1�1X
k=a1

1

k
�H(p)] (57)

For instance, when a1 = b1 = 1, this gives:

S(D1; D2) = N � log(N + 1)� log

 
N

n

!
(58)

with the asymptotic form

S(D1; D2) � N(1�H(p)) + log

p
2N�pq

N + 1
� N(1�H(p)) (59)

With a uniform symmetric prior, the empirical distribution with maximal entropy brings

the least information. When a1 = b1 = 5 this gives R(D1; D2) � N [0:746 � H(p)]. As we

increase a1+ b1, keeping a1 = b1, the constant
P2a1�1

a1
(1=k) decreases to its asymptotic value

log 2 which corresponds to the asymptotic form S(D1; D2) � NK(p; 0:5). The stronger the

strength of the uniform prior (the larger a1 + b1), the smaller the surprise created by a die

with maximum entropy.
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Appendix B: Continuous Case

Unknown Mean/Known Variance

Consider now two Gaussians G1(�1; �1) and G2(�2; �2). Then, after some algebra, the cross

term is given by

F (G1; G2) =

Z +1

�1
G1 logG2dx = �

1

2
log(2��22)�

�21 + (�1 � �2)
2

2�22
(60)

here using for simplicity natural logarithms. F (G;G) = 1
2
log[2�e�2] = H(G) is the entropy.

The Kullback-Liebler divergence can then be obtained

K(G1; G2) = �
1

2
+ log

�2

�1
+
�21 + (�1 � �2)

2

2�22
(61)

Consider now a data set with N points x1; : : : ; xN with empirical mean �m. If the data has

known variance �2, then the posterior parameters are given by:

�2 =

�1
�2
1

+ N �m
�2

1
�2
1

+ N
�2

and
1

�22
=

1

�21
+
N

�2
(62)

In the general case

S(G1; G2) = log
�q

�2 +N�21

+N
�21
2�2

+
N2�21(�1 � �m)2

2�2(�2 +N�21)
�

N

2�2
[�21 + (�1 � �m)2] (63)

when N is large. In the special case where the prior has the same variance has the data

�1 = � then the formula simpli�es a little and yields

S(G1; G2) =
N

2
�

1

2
log(N + 1) +

N2(�1 � �m)2

2(N + 1)�2
�

N

2�2
[�2 + (�1 � �m)2] (64)

when N is large. In any case, surprise grows linearly with N with a coe�cient that is the

sum of the prior variance and the square di�erence between the expected mean and the

empirical mean scaled by the variance of the data.

Unknown Variance/Known Mean

In the case of unknown variance and known mean, we have a family M(�2) of models with

a conjugate prior for �2 that is a scaled inverse gamma distribution

�1(�1; s1) =
(�1
2
)�1=2s�11

�(�1
2
)

(�2)�(
�1
2
+1)e�

�1s
2
1

2�2 d�2 = C1(�
2)�(

�1
2
+1)e�

�1s
2
1

2�2 d�2 (65)
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with �1 > 0 degrees of freedom and scale s1 > 0. F can be computed expanding the integrals

and using the fact that
R+1
0 x�=2�1e�x log x = �(�

2
)	(�

2
). This yields:

F (�1; s1; �2; s2) = log
(�2=2)

�2=2s�22
�(�2

2
)

+ (
�2

2
+ 1)[	(

�1

2
) + log

2

�1s
2
1

]�
�2s

2
2

2s21
(66)

The posterior is then a scaled inverse gamma distribution [10] with

�2 = �1 +N and s22 =
�1s

2
1 +N ��2

�1 +N
(67)

where ��2 is the empirical variance ��2 =
P

i(xi �m)2=N , based on the known mean m. The

surprise is given by

S(�1;�2) = log
C1

C2

�
N

2
(	(

�1

2
) + log

2

�1s
2
1

) +
N ��2

2s21
(68)

For large values of N , taking only the leading terms

S(�1;�2) �
N

2
(
��2

s21
+ log

�1s
2
1

2
� 	(

�1

2
))

+ log�(
�1 +N

2
)�

�1 +N

2
log

�1 +N

2
�

(�1 +N)

2
log

�1s
2
1 +N ��2

�1 +N
(69)

S(�1;�2) �
N

2
[
��2

s21
+ log

�1s
2
1

2��2
� 	(

�1

2
)] (70)

Thus surprise information scales linearly with N , with a coe�cient of proportionality that

typically depends mostly on the ratio of the empirical variance to the scale parameters s21,

which is roughly the expectation of the prior [the expectation of the prior is �1s
2
1=(�1 � 2)

provided �1 > 2]. The e�ects of very large of very small values of ��, or �1 can also be seen

in the formula above. In particular, surprise is largest when the empirical variance ��2 goes

to 0 or in�nity, i.e. is very di�erent from the prior expectation.

Unknown Mean/Unknown Variance

In the case of unknown mean and unknown variance, we have a family M(�; �2) of models

with a conjugate prior of the form G1�1 = P (�j�2)P (�2) = G1(�1; �
2=�1)�1(�1; s1). Thus

the prior has four parameters (�1; �1; �1; s1), with �1 > 0, �1 > 0, and s1 > 0. The conju-

gate posterior has the same form, with similar parameters (�2; �2; �2; s2) satisfying (see for

instance [10])

�2 =
�1

�1 +N
�1 +

N

�1 +N
�m (71)
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�2 = �1 +N (72)

�2 = �1 +N (73)

�2s
2
2 = �1s

2
1 + (N � 1)��2 +

�1N

�1 +N
( �m� �1)

2 (74)

with �m =
P
xi=N and ��2 =

P
(xi� �m)2=(N�1). Computation of F = F (�1; �1; �1; s1;�2; �2; �2; s2)

is similar to the two cases treated above and yields:

F (�1; �1; �1; s1;�2; �2; �2; s2) = �
1

2
[log

2�

�2
+
�2

�1
+ log

�1s
2
1

2
�	(

�1

2
) + �2(�2 � �1)

2s�21 ]

+
log(�2

2
)�2=2s�22

�(�2
2
)

+ (
�2

2
+ 1)[	(

�1

2
) + log

2

�1s
2
1

]�
�2s

2
2

2s21
(75)

From Equation 75, we can derive the surprise

S(G1�1; G2�2) =
1

2
[log

�1

�2
� 1 +

�2

�1
+ �2(�2 � �1)

2s�21 ] + log
C1

C2

+ (
�1 � �2

2
)[	(

�1

2
) + log

2

�1s
2
1

] +
�2s

2
2 � �1s

2
1

2s21
(76)

Substituting the value of the posterior parameters

S(G1�1; G2�2) =
1

2
log

�1

�1 +N
+

N

2�1
+
�1 +N

2

�
N( �m� �1)

(�1 +N)s1

�2
+ log

C1

C2

+ �
N

2
[	(

�1

2
) + log

2

�1s
2
1

] +
(N � 1)��2 + �1N

�1+N
( �m� �1)

2

2s21
(77)

For simplicity, we can consider the case where �1 = �m. Then

S(G1�1; G2�2) =
1

2
log

�1

�1 +N
+

N

2�1
+ log

C1

C2

�
N

2
[	(

�1

2
) + log

2

�1s
2
1

] +
(N � 1)��2

2s21
(78)

In all cases, for large values of N we always have the approximation

S(G1�1; G2�2) �
N

2
[
1

�1
+

��2

s21
+ log

�1s
2
1

2��2
� 	(

�1

2
) +

( �m� �1)
2

s21
] (79)

Surprisee is linear in N with a coe�cient that is essentially the sum of the coe�cients derived

in the unknown mean and unknown variance partial cases.
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