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Abstract

Knowing the coordination number and relative solvent

accessibility of all the residues in a protein is crucial for de-

riving constraints useful in modeling protein folding, pro-

tein structure, and in scoring remote homology searches.

We develop ensembles of bidirectional recurrent neural net-

work architectures to improve the state-of-the-art in both

contact and accessibility prediction, leveraging a large cor-

pus of curated data together with evolutionary informa-

tion. The ensembles are used to discriminate between two

di�erent states of residue contacts or relative solvent ac-

cessibility, higher or lower than a threshold determined by

the average value of the residue distribution or the acces-

sibility cuto�. For coordination numbers, the ensemble

achieves performances ranging from 70.6% to 73.9% de-

pending on the radius adopted to discriminate contacts

(6�A to 12�A). These performances represent gains of 16-20%

over the baseline statistical predictor, always assigning an

amino acid to the largest class, and are 4-7% better than

any previous method. A combination of di�erent radius

predictors further improves the performance. For accessi-

bility thresholds in the relevant 15-30% range, the ensem-

ble consistently achieves a performance above 77%, which is

10-16% above the baseline prediction and better than other

existing predictors, by up to several percentage points. For

both problems, we quantify the improvement due to evo-

lutionary information in the form of PSIBLAST-generated

pro�les over BLAST pro�les. The prediction programs are

implemented in the form of two web servers, CONpro and

ACCpro, available at http://promoter.ics.uci.edu/BRNN-

PRED/.

Keywords: protein structure prediction, protein contacts, contact map,

contact number, recurrent neural networks, evolutionary information.
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1 Introduction

One approach towards predicting the structure of a protein is to predict a

number of key attributes, in particular secondary structure, solvent accessi-

bility, and coordination number. Deriving an accurate contact map from the

primary sequence and these attributes is emerging as a promising strategy

for solving the structure prediction problem [9, 24]. For most of these at-

tributes, machine learning methods in general, and more speci�cally neural

network approaches, have proven to be particularly e�ective. For instance,

the best secondary structure predictors today are neural-network-based, with

performance in the 75-80% range and these continue to improve [22, 5, 24].

In this work, we develop recurrent neural network methods for the improved

prediction of coordination number and solvent accessibility.

1.1 Coordination Number

Knowing the correct positions of residue contacts in proteins has proven

to be extremely useful in determining the three-dimensional structure of

a given protein, as demonstrated in the CASP3 and CASP4 competitions

[http://predictioncenter.llnl.gov/] [32, 24]. The number of stabilizing con-

tacts that residues make in the protein-folded globule (see [15] for a review)

is a fundamental aspect of protein structure that is well worth predicting.

In particular, this number can be used to \cleanup" noisy contact map pre-

dictions based on primary sequence and secondary structure information.

Furthermore, when a remote homology is searched, it bene�ts from deriving

a surface potential from the distribution of contact numbers for each residue.

This is computed by implementing an inverse of the Boltzman rule [18], or by

using the notion of contacts among residues to improve existing threading

algorithms [30]. In an o�-lattice context, the number of contacts for each

residue, or coordination number, is computed inside a spherical cut-o� cen-

tered on each residue by counting the number of residues falling inside the

sphere [18].

In the last few years researchers have made various attempts to predict

contacts [40, 31, 16] and distances among residues in proteins [4, 26, 19], with

some degree of success. In [17], a feed-forward neural network approach with
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a local window was developed to discriminate between two di�erent states

of residue contacts, characterized by a contact number higher or lower than

the average value of the residue distribution. For a contact radius of 6.5�A,

this approach achieved a performance of 69% correct prediction, 12% above

the level of the simple baseline classi�er. By de�nition, the baseline classi�er

always selects the most frequent category for each amino acid independently

of its environment [36].

1.2 Solvent Accessibility

A second important feature of protein structural organization is the degree to

which residues in the structure interact with the solvent molecules. Relative

solvent accessibility classes are usually derived from the DSSP program [23]

by normalizing it at the maximum value of exposed surface area obtainable

for each residue. Di�erent arbitrary threshold values of solvent accessibil-

ity are chosen to de�ne binary categories (buried and exposed) or ternary

categories (buried, partially exposed, or exposed).

Prediction of residue accessibility has been attempted with di�erent meth-

ods based on neural networks with [38] or without [21] evolutionary infor-

mation, Bayesian methods [41], residue substitution matrices [33], and infor-

mation theory [29] (see also [28, 13, 25]). The baseline approach [36] here

classi�es residues into a burial or non-burial category using only the identity

of the residue, independent of the surrounding context. Despite its simplicity,

the baseline is as accurate as many previous more sophisticated methods. A

comparison of all the available methods reported in [36] showed that accuracy

values level o� around 69-71% when single protein sequences are used.

Recently, some groups [14, 25, 29] have revisited the problem of solvent

accessibility prediction using larger data sets. Naturally, the accuracy of the

prediction depends on the threshold value of solvent accessibility. JNET [14]

has been improved by means of new alignment methods, and the highest per-

formance of 76.2% is achieved when the solvent accessibility threshold is 25%.

Using approaches based on information theory and multiple sequence align-

ments, accuracy of 71.5% with a threshold cuto� of 20% has been reported

in [25]. A similar method, trained and scored using a program di�erent from

DSSP to compute solvent accessibility, has a reported accuracy of 74.4%
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when the relative solvent accessibility threshold is set at 25% [29].

Based on the notion that less exposed residues are preferentially involved

in hydrophobically driven chain compaction, solvent accessibility also has

been routinely used to evaluate the number of residue contacts. In order to

simulate the hydrophobic collapse in model proteins, the number of residue

contacts is chosen as the inverse measure of residue solvent accessibility and,

in the case of simple lattice protein models, is the only source of interac-

tion [39]. In [17] it was shown that although a strong correlation between

accessibility and contact number is commonly accepted, residue surface ac-

cessibility has a di�erent distribution from the number of residue contacts,

so that residue classi�cation may be di�erent depending on which property

is highlighted. This �nding, which ought to be con�rmed by a statistical

correlation analysis, would support at least a partial separation between the

problems of predicting coordination number and relative solvent accessibility.

Here we �rst extract a large curated data set of contact and accessibility

information from the Protein Data Bank [12] and generate a set of corre-

sponding pro�les using the BLAST [2], and PSIBLAST [3] alignment/search

programs. We compute detailed contact, accessibility, and secondary struc-

ture correlation statistics on this set and, in particular, examine the e�ect

of the contact radius, ranging from 6�A to 12�A, as well as various accessibil-

ity thresholds. More importantly, we then develop a class of bidirectional

recurrent neural network architectures, capable of partially capturing long-

ranged information. In combination with the evolutionary pro�les, these

architectures are applied to the problem of predicting coordination number

and relative solvent accessibility.

2 Materials and Methods

2.1 Data Preparation

2.1.1 Coordination Number

As is always the case in machine learning approaches, the starting point is

the construction of a well-curated data set. The data set used here was

extracted from the PDB select list [20] of June 2000. The list of structures
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and additional information can be obtained from the following ftp site:

ftp://ftp.embl-heidelberg.de/pub/databases. To avoid biases, the set is redundancy-

reduced, with an identity threshold based on the distance derived in [1], which

corresponds to a sequence identity of roughly 22% for long alignments, and

higher for shorter ones. This set is further reduced by excluding those chains

whose backbone is interrupted. We run Kabsch and Sander's DSSP program

[23] on all the PDB �les in the PDB select list, and exclude the ones on

which DSSP crashed due, for instance, to missing entries, erroneous entries,

or format errors. The �nal set consists of 1,086 protein chains containing a

total of 166,750 residues.

We compute the number of inter-residue contacts for each residue in the

data set by de�ning a spherical protein volume centered on the C� atom,

with a given radius R �A, and counting the number of additional C� atoms

contained in the sphere. Thus, by this de�nition, a residue is in contact with

its immediate primary sequence neighbors but not with itself. For a given

radius R, we compute the average number of contacts for each amino acid

over the entire set (Table 1). Each residue in a chain is then assigned to class

0 if the number of neighbors within the radius R is lower than the average,

and to class 1 if higher than the average. The process was repeated for radii

of 6, 8, 10 and 12 Angstroms. For each radius, the range, average, and per

amino acid distribution of the number of contacts is displayed in Table 1 and

Figures 1 and 2.

Table 1: Average and range of number of contacts for each radius across all

amino acids. Avg = average over all amino acids. Min = lowest average

number over all 20 amino acids with corresponding amino acid in brackets.

Max = highest average over all 20 amino acids with corresponding amino

acid in brackets.

6�A 8�A 10�A 12�A

Avg 5.33 9.55 16.93 27.20

Min 4.21(P) 8.36(E) 14.41(E) 22.97(E)

Max 6.08(C) 11.50(C) 20.27(C) 32.08(I)

In order to perform threefold cross-validation experiments, the data is
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then split evenly into three subsets, each containing 362 proteins (Table 2).

In all three subsets the two classes are distributed almost evenly. Class 0 is

slightly more numerous than class 1 for all four radii, ranging from a minimum

of 50.91 for 10�A to a maximum of 52.12 for 8 �A over the total set. This e�ect

is to be expected since the possible contact values below the average have a

more restricted range than the values above the average. The total number

of amino acids in each cross-validation experiment is approximately 165,000:

110,000 used as a training set and 55,000 as a test set (Table 3).

Table 2: Threefold cross-validation subset statistics with number of amino

acids in each class.

Class 6�A 8�A 10�A 12�A

Total set 0 85119 86906 84886 86401

166750 AA 1 81631 79844 81864 80349

Subset 1 0 28415 29344 28675 29357

55859 AA 1 27444 26515 27184 26502

Subset 2 0 28072 28008 27430 27860

54355 AA 1 26283 26347 26925 26495

Subset 3 0 28632 29554 28781 29184

56536 AA 1 27904 26982 27755 27352

Table 3: Typical training set statistics taken from the �rst set.

Sets Class 6�A 8�A 10�A 12�A

Train 0 56704 57562 56211 57044

Train 1 54187 53329 54680 53847

Test 0 28415 29344 28675 29357

Test 1 27444 26515 27184 26502

2.1.2 Solvent Accessibility

For solvent accessibility, we use the same data set as for the number of

contacts, except that 78 additional sequences have to be removed, leaving
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Figure 1: Distribution of number of contacts for amino acids A to L in al-

phabetical order: dotted-blue=6�A, solid-green=8�A, dashdot-red=10�A, dash-

lightblue=12�A [x-axis = number of contacts, y-axis = probability].
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Figure 2: Distribution of number of contacts for amino acids M to Y in al-

phabetical order: dotted-blue=6�A, solid-green=8�A, dashdot-red=10�A, dash-

lightblue=12�A [x-axis = number of contacts, y-axis = probability].
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a total of 1,008 sequences. The removed sequences correspond to PDB �les

containing residues that are not completely resolved (i.e. with only C� or C�

atoms) or non-standard amino acids. We build predictors for the two-state

relative solvent accessibility. Accessibility values are computed again using

the DSSP program. To predict the relative solvent accessibility RA(i) of each

residue i, we calculate RA(i) = 100 * ACC(i)/MAXA(i), where ACC(i) is

the solvent accessibility of residue i as computed by the DSSP program (in

�A2), and MAXA(i) is the maximal accessibility of amino acid type i [38].

For each relative accessibility percentage R, Figure 3 displays the percent-

age of amino acids that are more buried than R. As expected, most amino

acids tend to be buried: roughly 50% are less than 25% exposed. Thus, when

choosing a threshold for the classi�cation, values around 25% are the most

informative.
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Figure 3: Solvent accessibility distribution.

To perform threefold cross-validation experiments, the data is split in

the same fashion as for coordination number, although in this case some

sequences are missing. Twenty di�erent classi�cation schemes are extracted,
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from 0% to 95% exposure, with incremental steps of 5%. Table 4 displays

the number of amino acids for each classi�cation threshold and for each of

the three subsets, as well as for the entire set.

Table 4: Numbers of amino acids in each accessibility class for all the 20

thresholds, for each of the three test sets, and for the total set.

threshold Set0-cl0 Set0-cl1 Set1-cl0 Set1-cl1 Set2-cl0 Set2-cl1 All-cl0 All-cl1

0 7935 43677 7648 42186 8367 43342 23950 129205

5 14169 37443 13486 36348 14906 36803 42561 110594

10 17843 33769 16925 32909 18537 33172 53305 99850

15 20996 30616 19882 29952 21586 30123 62464 90691

20 23814 27798 22587 27247 24389 27320 70790 82365

25 26450 25162 25093 24741 26987 24722 78530 74625

30 29072 22540 27701 22133 29685 22024 86458 66697

35 31652 19960 30100 19734 32084 19625 93836 59319

40 34155 17457 32502 17332 34544 17165 101201 51954

45 36565 15047 34860 14974 36909 14800 108334 44821

50 38958 12654 37200 12634 39199 12510 115357 37798

55 41176 10436 39455 10379 41338 10371 121969 31186

60 43188 8424 41461 8373 43357 8352 128006 25149

65 44918 6694 43204 6630 45070 6639 133192 19963

70 46442 5170 44672 5162 46587 5122 137701 15454

75 47751 3861 45951 3883 47888 3821 141590 11565

80 48900 2712 47084 2750 49076 2633 145060 8095

85 49729 1883 47933 1901 49909 1800 147571 5584

90 50408 1204 48562 1272 50528 1181 149498 3657

95 50848 764 48992 842 50949 760 150789 2366

2.2 Pro�les

It is well known that evolutionary information in the form of multiple align-

ments and pro�les signi�cantly improves the accuracy of, for instance, sec-
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ondary structure prediction methods [37, 11, 7, 22, 14]. This is so because the

secondary structure of a family is more conserved than the primary amino

acid sequence. Similar e�ects have been reported for the prediction of contact

number and relative solvent accessibility. For instance, in the case of contact

number, an improvement of 3% has been reported in [17] using pro�les over

individual sequences. For relative solvent accessibility, a corresponding in-

crease of 5% has been described both with neural networks [37] and Bayesian

methods [41]. The work in [22] has shown that, at least in the case of sec-

ondary structure, carefully generated PSI-BLAST pro�les can give better

results than BLAST pro�les. Here we derive both BLAST and PSI-BLAST

pro�les and compare their e�ects on prediction performance.

BLAST: A �rst set of input pro�les is constructed by running the BLAST

program [2], with standard default parameters (E=10.0, BLOSUM62 ma-

trix), against the NR (non-redundant) database. The version used was avail-

able online in October 1999 and contained approximately 420,000 protein

sequences. For redundancy reduction, instead of using a hard threshold that

requires an arbitrary choice, we use a graduated weighting scheme by assign-

ing to each sequence a weight that measures how di�erent the sequence is

from the pro�le. Highly redundant sequences are assigned a lower weight.

For any given sequence, the information theoretical weight is given by the

sum over all columns in the pro�le of the Kullback-Liebler distance between

the delta distribution associated with the composition of the sequence in the

column and the corresponding pro�le distribution [5]. Formally, the weight

of sequence s is then

W (s) = �

X

c

logP [s(c)] (1)

where P [s(c)] is the probability of letter s in pro�le column c. In summary,

every sequence in a given alignment is assigned a weight proportional to the

Shannon information the sequence carries with respect to the unweighted

pro�le. A weighted pro�le matrix is then compiled and used as input for the

system (see also [7]).

PSI-BLAST: A second set of pro�les is generated by PSI-BLAST [3].

All proteins are aligned against the NR database. Alignments are generated

by the following four-step protocol [35]. First, �lter and remove all database
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sequences with COILS to mark coiled-coil regions [27] and SEG to mark

regions of low complexity [42]. Second, align the query protein against this

�ltered database with an E-value threshold for the iteration of 10�10 (PSI-

BLAST 'h' threshold) and a �nal threshold of E� 10�3 to accept hits. The

number of iterations is restricted to three to avoid drift [22, 35]. Third, align

the query against the un�ltered SWISS-PROT+TrEMBL+PDB using the

previously found, position-speci�c pro�le. Finally, use the same weighting

scheme as in the case of BLAST pro�les to balance the pro�le and remove

redundancy.

2.3 Recurrent Neural Network Architectures

Feed-forward neural networks have been one of the major machine-learning

tools used in protein structure prediction problems that range from the pre-

diction of secondary structure to the number of contacts. The major weak-

ness of feed-forward neural networks, however, is the use of a local input

window of �xed size, which cannot provide any access to long-range infor-

mation. Networks for contact prediction, for instance, have windows of size

1-15. Larger windows usually do not work, in part because the correspond-

ing increase in the number of parameters leads to over�tting. Increase in the

number of parameters, however, is not necessarily the main obstacle per se

because data is becoming abundant and techniques such as weight sharing

can be used to mitigate the risk of over�tting. The main problem is that long-

range signals are very weak compared to the additional \noise" introduced

by a larger window. Thus, larger windows tend to dilute sparse information

present in the input that is relevant for the prediction.

The methods we use to try to overcome the limitations of simple feed-

forward networks have been described in [7, 8] and [34] and consist of BRNNs

(Bidirectional Recurrent Neural Networks). Letting t denote position within

a protein sequence, the overall model for binary classi�cation outputs for

each t a number Ot (0 � Ot � 1) representing the membership probability

of the residue at position t in the class. In the coordination or accessibility

prediction applications, the output consists of a single logistic output unit

which estimates the probability that the coordination number (resp. solvent

accessibility) is higher or lower than the average, or accessibility, cuto� in
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the center of the corresponding input window.

The output prediction has the functional form:

Ot = �(Ft; Bt; It) (2)

and depends on the forward (upstream) context Ft, the backward (down-

stream context) Bt, and the input It at time t. The vector It 2 IRk encodes

the external input at time t. In the most simple case, where the input is

limited to a single amino acid, k = 20 by using orthogonal encoding. Larger

input windows extending over several amino acids are also possible. The

function � is realized by a neural network N� (see center and top connections

in Figure 4). The performance of the model can be assessed using the relative

entropy between the estimated and the target distribution.

The novelty of the model is in the contextual information contained in

the vectors Ft 2 IRn and especially in Bt 2 IRm. These satisfy the recurrent

bidirectional equations:

Ft = �(Ft�1; It)

Bt = �(Bt+1; It)
(3)

Here �(�) and �(�) are learnable non-linear state transition functions, imple-

mented by two NNs, N� and N� (left and right subnetworks in Figure 4).

The boundary conditions for Ft and Bt are set to 0, i.e. F0 = BT+1 = 0 where

T is the length of the protein being examined. Intuitively, we can think of

Ft and Bt as \wheels" that can be rolled along the protein. To predict the

class at position t, we roll the wheels in opposite directions from the N and

C terminus up to position t and then combine what is read on the wheels

with It to calculate the proper output using �.

All the weights of the BRNN architecture, including the weights in the

recurrent wheels, can be trained in a supervised fashion from examples by

a generalized form of gradient descent or backpropagation through time, by

unfolding the wheels in time, or rather space. Architectural variants can be

obtained by changing the size of the input windows, the size of the window

of hidden states considered to determine the output, the number of hidden

layers, the number of hidden units in each layer and so forth. In what follows,

we use the following notation:

Ct = size of semi-window of context states considered by the output network;
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t-th amino acid

ϕ(.) β(.)

copycopy

η(.)
F Bt

Ot

q-1

t

q+1

I
Bt+1Ft-1

t

Figure 4: A BRNN architecture with a left (forward) and right (backward)

context associated with two recurrent networks (wheels). External input to

the wheels is not shown.

NFB = number of output units in the left (forward) and right (backward)

context networks (wheels);

NHO = number of hidden units in the output network;

NHC = number of hidden units in the context networks.

The BRNN networks are trained by back-propagation on the relative

entropy error between the output and target probability distributions. In a

typical case, we use a hybrid between online and batch training, with 300

batch blocks (2-3 proteins each) per training set. Thus weights are updated

300 times per epoch after each block. The learning rate per block is initially

set at about 2:7 � 10�4, corresponding to the number of blocks divided by

ten times the number of residues (0:1 � 300=110; 000), and is progressively

decreased. The training set is also shu�ed at each epoch, so that the error is

not decreasing monotonically. There is no momentum term or weight decay.

When the error does not decrease for 50 consecutive epochs, the learning

rate is divided by 2, and training is restarted from the lowest error model.

Training stops after 8 or more reductions, corresponding to a learning rate

that is 256 times smaller than the initial one, which usually happens after

1,500-2,500 epochs.

BRNNs have been used for secondary structure prediction and to develop

the SSpro web server [http://promoter.ics.uci.edu/BRNN-PRED/]. They

have also been used for the prediction of amino acid partners in beta sheets
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[10]. In [7] evidence is provided that these architectures extend the range over

which information can be e�ectively captured with respect to feed-forward

neural networks, up to an e�ective window size of about 30 amino acids in

the case of secondary structure prediction.

3 Results and Discussion

3.1 Correlations

We used several di�erent encoding schemes to compute correlations between

di�erent structural features.

1. Real numbers (i.e., relative accessibility, and the number of contacts for

each cuto�).

2. Two states (1 and 0) for each descriptor. For instance

� 1 if number of contacts is greater than average

� 0 otherwise

or

� 1 if relative accessibility is greater than 16%

� 0 otherwise

3. Three states (-1 0 1) for each descriptor. For instance,

� 1 if contact is greater than average plus 1

� -1 if contact smaller than average minus 1

� 0 otherwise

or

� 1 if relative accessibility > 50%

� -1 if relative accessibility < 9%

� 0 otherwise

4. Secondary structure.

� 1 if residue in H, 0 otherwise (H)

� 1 if residue in E, 0 otherwise (E)

� 1 if residue in H, -1 if residue in E, 0 otherwise (HE)

The correlations between the contact numbers in the four di�erent ra-

dius categories are shown in Table 5, together with the correlations between

contact numbers and relative solvent accessibility. As expected, correlations
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between contact numbers are high, especially between 8�A, 10�A and 12�A cate-

gories, while the 6�A category is less correlated to the others. The correlation

between the 6�A and 12�A numbers is only 0.46. Likewise, correlations be-

tween contact numbers and accessibility exist but are negative and far from

perfect. They tend to decrease with smaller radius values: the correlation is

-0.71 at 12�A, but only -0.52 at 6�A.

Table 5: Correlations between contact numbers for di�erent radius values

and between contact numbers and relative solvent accessibility.

6�A 8�A 10�A 12�A ACC

6�A 1.0 0.63 0.53 0.46 -0.52

8�A 1.0 0.86 0.79 -0.70

10�A 1.0 0.92 -0.72

12�A 1.0 -0.71

ACC 1.0

Similar results are obtained using two-and three-state correlation values

(not shown). These results con�rm that the 6.0�A coordination cuto� cap-

tures a di�erent picture of the local environment with respect to all other

cuto�s. This suggests that the behavior at 6�A is biased by the sequence

neighboring contacts (helix or turns), while larger cuto�s also involve con-

tacts with residues that are linearly distant along the primary sequence (e.g.

beta structures).

This hypothesis is supported by the correlations between accessibility

or contact number and secondary structure, as reported in Table 6. Overall

these correlations are quite weak, but the correlation between residue contact

number and helical structure at 6�A (0.42) is higher compared to all other

correlations. In contrast, residue contact number in the 8-12�A range is far

more correlated with extended (E) structures than helical structures. This

provides further evidence that larger cuto�s are more suitable to capture

contacts associated with large sequence separations. Note also that overall

the correlations decrease when going from real-valued to two-state encoding.

This indicates that even though a two-state (or three-state) classi�cation

is quite useful in real applications, the threshold de�nitions are of course
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somewhat arbitrary.

Table 6: Simple, two-state (2), and three-state (3) correlations between num-

ber of contacts for di�erent radius values and relative accessibility with sec-

ondary structure classes H, E, and HE (see main text).

H E HE

ACC -0.10 -0.24 0.07

ACC (2) -0.07 -0.20 0.07

ACC(3) -0.08 -0.24 0.08

6�A 0.42 0.07 0.23

6�A(2) 0.40 0.01 0.25

6�A(3) 0.32 0.02 0.20

8�A 0.06 0.33 -0.15

8�A(2) 0.05 0.24 -0.10

8�A(3) 0.04 0.29 -0.14

10�A 0.04 0.30 -0.14

10�A(2) 0.02 0.24 -0.12

10�A(3) 0.02 0.26 -0.13

12�A 0.05 0.32 -0.15

12�A(2) 0.05 0.24 -0.11

12�A(3) 0.05 0.25 -0.11

3.2 Prediction of Coordination Number

Preliminary tests were conducted with a number of di�erent BRNN archi-

tectures. We �nally focused on 7 BRNNs with the same structure as those

used in the early version of the SSpro software [7] for protein secondary

structure prediction. The basic parameters of each architecture are given in

Table 7. The number of parameters in each architecture ranges from 1,959 to

5,430. We used a network of 16 Sun Microsystems UltraSparc workstations

for training and testing, roughly equivalent to two years of a single CPU,

excluding the preliminary experiments. The 7 architectures are combined

by simple averaging of the outputs into an ensemble predictor. For a given
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radius category, each ensemble is the average of 21 predictors (7 networks �

3 cross-validations subsets).

Table 7: Total number of weights and size parameters of the 7 BRNN models.

Ct = size of semi-window of context states considered by the output network.

NFB = number of output units in the left and right context networks. NHO

= number of hidden units in the output network. NHC = number of hidden

units in the context networks.

model # Weights Ct NFB NHO NHC

0 2241 3 8 11 9

1 1959 2 9 11 8

2 3009 3 12 11 9

3 2615 3 12 9 9

4 4232 3 15 12 13

5 4896 3 17 12 15

6 5430 3 17 14 15

Several indices can be used to score the e�ciency [6] of the algorithm.

Here we use Q2, the number of correctly predicted residues divided by the

total number of residues, and the Matthews' correlation coe�cient. The

results of threefold cross-validation, corresponding to 3 � 4 � 7 = 84 tests,

for each one of the 7 BRNNs and for the ensemble, are summarized in Table

8 for the test sets.

Overall, compact models tend to show better performance. Larger models

perform worse because they over�t the training set. The e�ect of over�tting

is considerable in the 6�A and 8�A categories, moderate for 10�A and 12�A. Al-

though large models sometimes have signi�cantly poorer performance, they

still prove useful when combined in an ensemble. In each radius category,

the ensemble represents a sizeable improvement over each individual archi-

tecture and performs considerably better than the simple baseline predictor

that always assigns a residue to its most abundant class independently of its

environment [36]. The gains over the baseline predictor range from 16.0% for

the 6�A ensemble to 21.3% for 12�A ensemble. Note that the error bar on the

performance estimates at the level of single amino acids is 0.11%. The best
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Table 8: Percentage of threefold cross-validation results obtained with several

BRNNs and the corresponding ensemble on the test set, for PSI-BLAST-

based input pro�les. Performance results expressed in percentages of correct

prediction (Q2). Ens = ensemble of models in a given radius category. Comb

= combination of 4 ensembles associated with di�erent radius categories.

Filter = plain �lter applied to 4 ensembles associated with di�erent radius

categories.

model # 6�A 8�A 10�A 12�A

0 71.59 69.29 71.04 73.00

1 72.03 69.45 70.96 72.42

2 71.04 68.91 70.58 72.71

3 71.39 69.28 70.84 72.68

4 69.99 67.80 69.79 72.54

5 69.77 67.72 69.54 71.93

6 69.95 67.49 70.16 71.69

Ens 73.02 70.57 72.00 73.93

Comb 73.24 70.95 72.13 74.09

Filter 73.13 70.56 72.02 73.92

previously known predictor [17], trained and tested only on a 6.5�A radius

data set, achieved a performance of 69%, 12% better than the correspond-

ing baseline predictor. Here in the 6�A category, closest to the one used in

[17], the ensemble of BRNNs trained using PSI-BLAST pro�les achieves a

Q2 of 73.02%, a gain of more than 4%. At 12�A, the ensemble of BRNNs

achieves a performance of 73.93% correct prediction, with a correlation co-

e�cient of 0.48. The ensemble of BRNNs trained on BLAST pro�les show

slightly poorer performances. Table 9 shows how the PSI-BLAST pro�les

are responsible for Q2 gains of 0.5-0.9%. The error bar on the performance

estimates at the level of single amino acids is 0.11%.

At least two reasons ought to be considered to explain performance di�er-

ences across the four radius categories. First, the performance of the baseline

predictors decreases with radius size. This particularly a�ects the 6�A pre-

dictor, whose base level is 3% higher than the others. Second, as the radius
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Table 9: Threefold cross-validation results obtained with the four ensembles.

Gains of the PSI-BLAST-based ensembles over the BLAST-based ensembles.

Q2 = percentage of correctly assigned residues Corr = Matthews' correlation

coe�cients. BLAST = BLAST-based pro�les. PSI = PSI-BLAST-based

pro�les. Di� = di�erence PSI-BLAST.

6�A 8�A 10�A 12�A

Q2 PSI 73.02 70.57 72.00 73.93

BLAST 72.54 70.09 71.20 73.03

Di� 0.48 0.48 0.80 0.90

Corr PSI 0.462 0.410 0.440 0.478

BLAST 0.452 0.400 0.424 0.460

Di� 0.010 0.010 0.016 0.017

is increased, the total length of the chain becomes increasingly relevant. The

average number of contacts in the 12�A dataset is comparable to the length

of short proteins, making it less likely or even impossible sometimes to have

residues belonging to class 1. Isoleucine, for instance, requires 33 contacts to

be classi�ed as 1, which is of course impossible in proteins shorter than 34

residues, and unlikely for proteins that are just slightly longer.

Table 10: Comparison to baseline predictor. PSI-BLAST- based pro�les. Q2

percentage measure. Ens = ensemble of models in a given radius category.

Comb = combination of ensembles across categories. Base = baseline pre-

dictor which selects the largest class for each amino acid. Di� = di�erence

in Q2 between Comb and Base.

Q2 6�A 8�A 10�A 12�A

Ens 73.02 70.57 72.00 73.93

Comb 73.24 70.95 72.13 74.09

Base 57.01 54.11 52.86 52.66

Di� 16.23 16.84 19.27 21.43

It is natural to wonder whether performance could be further improved by
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Table 11: Same as previous table but using correlation measure.

corr 6�A 8�A 10�A 12�A

Ens 0.462 0.410 0.440 0.478

Comb 0.467 0.419 0.443 0.482

Base 0.195 0.119 0.063 0.051

combining predictors across the four radius categories. Thus we can combine

the previous ensembles using a small BRNN (a small feed-forward neural

network gives similar results) with parameters Ct = 2, NFB = 3, NHO =

4, and NHC = 3. To avoid retraining on the same training set, we perform

a twofold cross validation on each of the 3 subsets of the previous cross-

validation. The results (Comb) are reported in the last row of Table 8. Each

number is the average of 6 di�erent values, since each of the 3 subsets of

the previous cross-validation experiment is split into 2, and the 2 resulting

subsets are used alternatively as test and training sets in this experiment,

yielding a total of 6 � 4 = 24 numbers. The improvements obtained by

pooling di�erent radius categories range from 0.13% for 10�A to 0.38% for the

8�A category.

To make sure that these improvements are due to the combination of

diverse information and not to a �ltering e�ect associated with the additional

BRNN used in the combination, we also test the same BRNN architecture

as a �lter for each single-category predictor (Filter in Table 8). The latter

simple output �ltering approach gives results that are extremely similar to

the un�ltered case, with di�erences in the -0.01 or +0.02 percentage range,

except for the 6�A category, where a small improvement of 0.11% is observed.

Thus the small but signi�cant improvements observed with Comb can be

imputed to the combination of di�erent information associated with the 6�A,

8�A, 10�A, and 12�A categories.

3.3 Prediction of Relative Solvent Accessibility

As in the contact case, it is possible to de�ne a baseline statistical predictor

that assigns an amino acid to the largest class for the given amino acid [36].
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We do so in a threefold cross-validation context, i.e., the largest class for

a given amino acid is determined on the training set and is not always the

largest on the test set. This cannot be avoided but has very little or no

impact. The results are displayed in Table 12.

Table 12: Percentage performance of baseline accessibility predictors for all

thresholds, threefold cross-validation. BaseN = baseline results on the N-th

test set. BaseAll = average of baseline results.

threshold Base0 Base1 Base2 BaseAll

0 84.63 84.65 83.82 84.37

5 72.55 72.94 71.17 72.22

10 65.43 66.04 64.15 65.21

15 62.12 62.91 61.33 62.12

20 65.68 66.75 65.76 66.06

25 65.35 67.96 67.33 66.88

30 65.54 66.30 65.75 65.87

35 67.54 68.08 67.93 67.85

40 68.56 68.46 69.20 68.74

45 71.30 70.98 72.32 71.53

50 75.48 74.65 75.81 75.31

55 79.78 79.17 79.94 79.63

60 83.68 83.20 83.85 83.57

65 87.03 86.70 87.16 86.96

70 89.98 89.64 90.09 89.91

75 92.52 92.21 92.61 92.45

80 94.75 94.48 94.91 94.71

85 96.35 96.19 96.52 96.35

90 97.67 97.45 97.72 97.61

95 98.52 98.31 98.53 98.45

The threefold cross-validation was carried using the same 7 BRNN archi-

tectures used for the number of contacts (Table 7). Results of the threefold

cross-validation for all models and thresholds (test sets), using PSI-BLAST-

based input pro�les, are summarized in Table 13.
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Table 13: Threefold cross-validation results for each of the 7 BRNN models

and for the ensemble, in the case of PSI-BLAST pro�les. Ens = ensemble of

the 7 models,

model 0 1 2 3 4 5 6 Ens

0 86.12 86.08 86.18 86.22 86.14 86.21 86.12 86.49

5 80.63 80.59 80.68 80.74 80.59 80.98 80.57 81.20

10 78.62 78.66 78.72 78.71 78.60 78.88 78.46 79.26

15 77.51 77.61 77.65 77.53 77.41 77.76 77.33 78.34

20 76.80 76.83 76.85 76.80 76.72 77.04 76.52 77.49

25 76.47 76.49 76.53 76.57 76.27 76.64 76.23 77.18

30 76.29 76.30 76.32 76.33 76.11 76.58 76.03 77.01

35 76.27 76.35 76.34 76.35 76.24 76.63 76.17 77.03

40 76.80 76.86 76.78 76.83 76.71 77.01 76.70 77.53

45 77.85 77.84 77.83 77.83 77.77 78.04 77.75 78.44

50 79.62 79.55 79.58 79.62 79.54 79.72 79.53 80.10

55 82.09 81.93 82.05 82.14 82.07 82.07 82.10 81.92

60 84.88 84.81 84.87 84.90 84.86 84.91 84.79 84.42

65 87.71 87.65 87.69 87.73 87.68 87.70 87.72 87.80

70 90.40 90.40 90.39 90.43 90.38 90.42 90.34 90.45

75 92.80 92.82 92.81 92.82 92.77 92.83 92.77 92.85

80 94.97 94.99 94.98 94.98 94.95 94.98 94.97 95.02

85 96.52 96.52 96.52 96.52 96.51 96.50 96.50 96.27

90 97.69 97.66 97.66 97.65 97.69 97.65 97.67 97.66

95 98.46 98.46 98.46 98.46 98.46 98.45 98.45 98.45

Performance of the ensemble on both training and test sets is displayed in

Figure 5, together with the baseline prediction. For thresholds in the range

15-30% exposed, neither class covers more than 60% of the set, and therefore

the classi�cation problem is more balanced, hence harder. It is in this bal-

anced region that the ensemble outperforms the baseline predictor by more

than 10%. For an exposure threshold of 25%, the two classes are almost

perfectly balanced. In this case, we achieve 77.2% correct classi�cation. In

the balanced region, error bars are again of the order of 0.1% at the single

24



Table 14: Threefold cross-validation results for di�erent input pro�les, com-

pared to the baseline predictor. Base = baseline predictor. BLAST =

BLAST-based pro�les. PSI = PSI-BLAST-based pro�les

Base BLAST PSI PSI - Base PSI - BLAST

0 84.37 86.20 86.49 2.12 0.29

5 72.22 80.71 81.20 8.98 0.50

10 65.21 78.55 79.26 14.05 0.71

15 62.12 77.51 78.34 16.22 0.82

20 66.06 76.85 77.49 11.42 0.64

25 66.88 76.59 77.18 10.30 0.59

30 65.87 76.36 77.01 11.15 0.65

35 67.85 76.58 77.03 9.18 0.45

40 68.74 77.03 77.53 8.79 0.50

45 71.53 78.19 78.44 6.90 0.24

50 75.31 79.96 80.10 4.79 0.15

55 79.63 81.84 81.92 2.28 0.08

60 83.57 84.37 84.42 0.84 0.05

65 86.96 87.76 87.80 0.83 0.04

70 89.91 90.43 90.45 0.54 0.01

75 92.45 92.84 92.85 0.40 0.01

80 94.71 94.99 95.02 0.30 0.03

85 96.35 96.27 96.27 -0.08 0.01

90 97.61 97.67 97.66 0.05 -0.01

95 98.45 98.46 98.45 0.00 0.00

amino acid level. The best improvement with respect to the baseline predic-

tion is 16.2%, achieved for an exposure threshold of 15%. As in the case of

the coordination number, PSI-BLAST pro�les prove useful for the prediction

of relative solvent accessibility. Table 14 shows how 0.6-0.8% gains over the

BLAST-based ensemble are observed in the 15-30% threshold region.

The current ensemble outperforms other recently published solvent ac-

cessibility approaches. With a threshold of 20%, Li an Pan [25] achieved a

performance of 71.5% using single sequences, claiming that multiple align-
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ments in this case are less useful than in secondary structure prediction.

While there may be some truth to that claim, we still �nd pro�les useful.

For the same threshold, our PSI-BLAST-based ensemble achieves 77.5% cor-

rect prediction. Another recent prediction server [28] claims 70.7% correct

prediction at a 25% threshold, versus the 77.2% of our ensemble for the same

threshold. The less recent PHDacc server [38] claims 74% with a threshold

of 16%. For comparison, at a 15% threshold, the baseline method performs

the worst, while our system achieves 78.3% accuracy. Closest to our perfor-

mance is perhaps the system in [14], which achieves 76.2% at 25%, where we

achieve 77.2%, 1% better. Thus, to the best of our knowledge, this is the top

performance achieved so far by any method although an entirely fair compar-

ison would require comparing all methods on exactly the same data. Such

comparison may become possible in the near future through an automated

web server similar to the EVA server (http://cubic.bioc.columbia.edu/eva/).
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Figure 5: Ensemble solvent accessibility prediction. Baseline predictor (blue

crosses). BLASTbased ensemble (red circles), PSI-BLAST-based ensemble

(magenta stars). There are 20 di�erent thresholds.
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3.4 Long-Range E�ects

We believe our improvements are due both to an increase in the size of

the training sets and in the architectures we have developed, in particular

their ability to capture long-range interactions that are beyond the reach of

conventional feed-forward neural networks, with their relatively small and

�xed input window sizes. In order to test the capabilities of our models to

capture long-range information, we looked at the performance of a typical

BRNN architecture (in this case # 3) when fed with a sequence where all

inputs are replaced by 0 outside the range [t � �; t + � ], as in [7]. The

experiment was repeated for di�erent values of � from 0 to 70, for both

contact and accessibility (Figure 6). For contacts in the 6, 8, 10 and 12

�A categories, 0.1 below optimal performance is achieved for � = 20, 45, 62

and 75, corresponding to window sizes of 41, 91, 125, and 151 residues),

respectively in the 6, 8, 10 and 12 �A categories. The signal of the protein

terminus is in fact propagated beyond 70 amino acids in the 12�A system by

the BRNN architectures. This signal implicitly provides a sense of protein

size during the classi�cation process.

For accessibility, only minor changes are observed beyond � = 30, i.e.,

a window size of 61 residues. For instance, for � = 35 and an accessibility

threshold of 25%, the performance of the model trained with incomplete data

achieves a prediction only 0.1% below the performance of the same model

trained with complete data.

A reasonable interpretation of these results is that the BRNN architec-

tures can leverage information in a window of up to 60-70 residues in both

kinds of prediction. In the case of contact prediction, however, the size of

the protein is particularly important as well, so the BRNNs learn how to

measure it by the distance to the N and C terminus. Obviously this e�ect

is increasingly important with the increase in the size of the sphere used to

determine contacts, i.e., the increase in the number of neighbors needed to

be above the average.
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Figure 6: Distant information exploited by the BRNN. Figures correspond

to model #3 and validation subset 1. The horizontal axis represents half the

window size, i.e., the distance � from a given position beyond which all entries

are set to null values. The vertical axis represents the percentage of correct

prediction. Left plot represents contact predictions at 6�A (dotted line/balls),

8�A (solid line/x), 10�A (dash-dot line/stars), and 12�A (dashed line/+). Right

plot represents accessibility predictions with thresholds 0 (dotted line/balls),

25 (solid line/x), and 50 (dash-dot line/stars).

4 Conclusion

We have combined recursive neural network techniques and pro�les to im-

prove the state-of-the-art prediction of contact number and relative solvent

accessibility prediction. The predictors achieve performances in the 71-74%

range for contact numbers, depending on radius, and above 77% for acces-

sibility in the most interesting range. In both cases we have found evidence

that more sensitive PSI-BLAST pro�les provide a small but sizeable improve-

ment over BLAST pro�les. We also have collected contact and accessibility

statistics and studied the e�ects of contact radius and relative accessibility

threshold on prediction.

The predictors are implemented in the form of two Internet servers, CON-

pro for contact number and ACCpro for relative solvent accessibility, acces-

sible at http://promoter.ics.uci.edu/BRNN-PRED/. For coordination num-

bers, predictions are returned for 6, 8, 10, and 12 �A. For solvent accessibility,
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users can select the threshold, 25% being the default value. Predictions are

emailed back to the users after a brief period of time, depending on server

load.

ACCpro and CONpro are part of a broader suite of programs aimed at

predicting protein 3D structure via contact map prediction, and contact map

prediction via prediction of structural features. Prediction of structural fea-

tures, such as accessibility, can also be used as a �lter for other tasks, for

instance the study of contact sites involved in protein-protein interactions.

While perfect prediction of structural features should not be expected for a

variety of reasons, including the fact that some proteins do not fold sponta-

neously, it is encouraging to see performance in this area improve year after

year as a result of data expansion and algorithmic improvements. The per-

formance levels now achieved by these methods, coupled with their speed,

allows one to use them to sift through large sets of proteins and, for instance,

considerably narrow down the number of targets that need to be tested by

much more time-consuming computer or experimental methods.
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