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Abstract

Motivation: Predicting the secondary structure of a pro-

tein (alpha-helix, beta-sheet, coil) is an important step

towards elucidating its three dimensional structure, as

well as its function. Presently, the best predictors are

based on machine learning approaches, in particular neu-

ral network architectures with a �xed, and relatively

short, input window of amino acids, centered at the pre-

diction site. Although a �xed small window avoids over-

�tting problems, it does not permit to capture variable

long-ranged information.

Results: We introduce a family of novel architectures

which can learn to make predictions based on variable

ranges of dependencies. These architectures extend re-

current neural networks, introducing non-causal bidirec-

tional dynamics to capture both upstream and down-

stream information. The prediction algorithm is com-

pleted by the use of mixtures of estimators that leverage

evolutionary information, expressed in terms of multiple

alignments, both at the input and output levels. While

our system currently achieves an overall performance

close to 76% correct prediction|at least comparable to

the best existing systems|the main emphasis here is on

the development of new algorithmic ideas.

Availability: The executable program for predicting pro-

tein secondary structure is available from the authors

free of charge.

Contact: pfbaldi@ics.uci.edu, gpollast@ics.uci.edu,

brunak@cbs.dtu.dk, paolo@dsi.uni�.it.

1 Introduction

Computational predictive tools for the structure and

function of proteins have become increasingly important

as a result of genome and other sequencing projects. One

signi�cant step towards elucidating the structure and
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function of a protein, is the prediction of its secondary

structure (SS). The SS consists of local folding regu-

larities maintained by hydrogen bonds and traditionally

subdivided into three classes: alpha-helices, beta-sheets,

and coils representing all the rest. In alpha-helices, back-

bone hydrogen bonds link residues i and i+ 4, whereas

in beta-sheets, hydrogen bonds link two sequence seg-

ments, in either parallel or antiparallel fashion. The SS

structure can be sensitive to single amino acid changes

and depends on both local and long-ranged interactions.

The sequence preferences and correlations involved in

these structures have made SS prediction one of the clas-

sical problems in computational molecular biology, and

one where machine learning approaches have been par-

ticularly successful [see (Baldi & Brunak, 1998) for a de-

tailed review]. In particular, many di�erent feedforward

neural network (NN) architectures have been applied to

this task (Qian & Sejnowski, 1988; Rost & Sander, 1994;

Riis & Krogh, 1996). The inuential early work of Qian

and Sejnowski was based on a fully connected NN, with a

local input window of typical length 13 amino acids with

orthogonal encoding, and a single hidden layer. The out-

put layer consisted of three sigmoidal units with orthog-

onal encoding of the SS classes for the residue located

at the center of the input window. A signi�cant im-

provement was obtained by cascading the previous ar-

chitecture with a second network to clean up the out-

put of the lower network. The cascaded architecture

reached a performance of Q3 = 64:3%, with the corre-

lations C� = 0:41 for helices, C� = 0:31 for sheets, and

C = 0:41 for coils. Throughout this article, we use the

standard performance measures reviewed in (Baldi et al.,

2000a). Unless we specify otherwise, Q3 percentages are

measured on a per residue basis. Prediction of SS based

on single sequences and local windows seem to be limited

to < 65{69% accuracy. Increasing the size of the win-

dow, however, does not lead to improvements because of

the over�tting problem associated with large networks.

Building upon the work of (Qian & Sejnowski, 1988),
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for a long time the best SS prediction performance has

been achieved by the PHD scheme (Rost & Sander, 1993;

Rost & Sander, 1994). Rost and Sander used a number

of machine learning techniques including early stopping,

ensemble averages of di�erent networks, and a weight-

ing scheme to compensate for the well known compo-

sition biases of large low-similarity databases (roughly

30% helices, 20% sheets, and 50% coils). Most of the im-

provements, however, seem to result from the use of in-

put pro�les, derived from multiple alignments, that can

leverage evolutionary information|the SS being consid-

erably more conserved than the primary structure. In

the 1996 Asilomar blind prediction competition CASP2

(Critical Assessment of Protein Structure Prediction),

this method outperformed all others (Eisenberg, 1997),

reaching a performance level of 74%. While input pro-

�les contain information not present in individual se-

quences, it is worth noting that they also discard infor-

mation by losing intra-sequence correlations.

In (Riis & Krogh, 1996), further NN architectural and

machine learning re�nements are used, such as an adap-

tive encoding of the input amino acids by the NN weight

sharing technique to reduce the number of free param-

eters. Di�erent networks are designed for each SS class

by leveraging biological knowledge, such as the period-

icity of alpha-helices, with output �ltering and ensemble

averaging. Finally, predictions made from individual se-

quences are combined at the output level, using both

multiple alignments and a maximum entropy weighting

scheme (Krogh & Mitchinson, 1995). In spite of a con-

siderable amount of architectural design, the �nal perfor-

mance with multiple alignments is practically identical

to (Rost & Sander, 1994) with an overall accuracy of

Q3 = 71:3%, and correlations C� = 0:59, C� = 0:50,

and C = 0:41.

More recently, Cu� and Barton (Cu� & Barton, 1999)

have compared and combined the main existing predic-

tors. On the particular data sets used in their study, the

best isolated predictor is still PHD with Q3 = 71:9%.

At the last 1998 CASP3 competition, the best results

were obtained by (Jones, 1999), using a relatively sim-

ple but large NN architecture. Out of the 35 blind se-

quences, the program selected 23 and achieved a perfor-

mance of Q3 = 77.6% per protein, or Q3 = = 75.5%

per residue. The improvements seem to result in part

from the use of PSI-BLAST generated pro�les, although

this is somewhat controversial (Cu� & Barton, 1999) and

not directly reproducible since the �lters used to process

the raw pro�les are not described in su�cient detail in

(Jones, 1999).

Thus it appears today that to further improve SS pre-

diction one should use distant information, in sequences

and alignments, that is not contained in local input win-

dows. This is particularly clear in the case of beta-

sheets where stabilizing bonds can be formed between

amino acids far apart. This, however, poses two re-

lated challenges: (1) avoiding the over�tting associated

with large-input-windows; (2) detecting sparse and weak

long-ranged signals to modulate the signi�cant local in-

formation, while ignoring the additional noise found over

larger distances. In this paper, we approach the predic-

tion problem in a new way, introducing an algorithm

that uses the whole protein sequence rather than a short

substring.

To begin with, protein SS prediction can be formu-

lated as the problem of learning a synchronous sequen-

tial translation from strings in the amino acid alphabet

to strings in the SS alphabet. This task is a special

form of grammatical inference. Although several sym-

bolic algorithms exist for learning grammars (Angluin &

Smith, 1987), to the best of our knowledge they have not

led to successful protein SS predictors presumably be-

cause of their scarce robustness in the presence of noisy

data. Connectionist approaches, on the other hand, are

based on statistical learning and therefore tend to ex-

hibit greater robustness. The main connectionist ar-

chitectures that have been investigated for grammati-

cal inference are recurrent neural networks (RNN), with

both �rst- (Cleeremans, 1993) and second-order (Giles

et al., 1992) connections, as well as and input-output hid-

den Markov models (IOHMM) (Baldi & Chauvin, 1996;

Bengio & Frasconi, 1996). Both RNNs and IOHMMs are

sensible alternatives to methods based on a �xed-width

input window. The expressive power of these models en-

ables them to capture distant information in the form of

contextual knowledge stored into hidden state variables.

In this way, they can overcome the main disadvantage of

feedforward networks, namely the linear growth of the

number of parameters with the window size. Intuitively,

these models are parsimonious because of the implicit

weight sharing resulting from their stationarity, i.e. pa-

rameters do not vary over time. Thus, it would make

sense to tackle the SS prediction problem using RNNs

or IOHMMs.

A more careful analysis, however, reveals a basic limi-

tation of standard RNNs and IOHMMs in computational

biology. In fact, both classes of models are causal in the

sense that the output at time t does not depend on fu-

ture inputs. Causality is easy to justify in dynamics

that attempt to model the behavior of physical systems,

or that need to operate in real time. Clearly, in these

cases the response at time t cannot depend on stimulae

that the system has not yet encountered. But biological

sequences are not really temporal: the conformation and

function of a region in a sequence may strongly depend

on events located both upstream and downstream. Thus,

to tackle the SS prediction problem, we develop a con-

nectionist architecture that provides a non-causal gen-
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eralization of RNNs. Our proposal is motivated by the

assumption that both adaptive dynamics and non-causal

processing are needed to overcome the drawbacks of lo-

cal �xed-window approaches. Furthermore, we leverage

evolutionary information, both at the input and output

levels, using a mixture-of-estimators approach. While

our current system achieves an overall performance ex-

ceeding 75% correct prediction|at least comparable to

the best existing systems|the main emphasis here is on

the development of new algorithmic ideas.

2 Methods and Algorithms

2.1 Data Preparation
The assignment of the SS categories to the experimen-

tally determined 3D structure is nontrivial and is usually

performed by the widely used DSSP program (Kabsch

& Sander, 1983). DSSP works by assigning potential

backbone hydrogen bonds (based on the 3D coordinates

of the backbone atoms) and subsequently by identify-

ing repetitive bonding patterns. Two alternatives to

this assignment scheme are the programs STRIDE and

DEFINE. In addition to hydrogen bonds, STRIDE uses

also dihedral angles (Frishman & Argos, 1995). DE-

FINE uses di�erence distance matrices for evaluating the

match of interatomic distances in the protein to those

from idealized SS (Richards & Kundrot, 1988). While

assignment methods impact prediction performance to

some extent (Cu� & Barton, 1999), here we concentrate

exclusively on the DSSP assignments.

A number of data sets were used to develop and test

our algorithms. We will refer to each set using the

number of sequences contained in it. The �rst high

quality data used in this study was extracted from the

Brookhaven Protein Data Bank (PDB) (Bernstein & et

al., 1977) release 77 and subsequently updated. We ex-

cluded entries if:

� They were not determined by X-ray di�raction,

since no commonly used measure of quality is avail-

able for NMR or theoretical model structures.

� The program DSSP could not produce an output,

since we wanted to use the DSSP assignment of pro-

tein secondary structure (Kabsch & Sander, 1983).

� The protein had physical chain breaks (de�ned as

neighboring amino acids in the sequence having C�-

distances exceeding 4:0�A).

� They had a resolution worse than 1.9�A, since reso-

lutions better than this enables the crystallographer

to remove most errors from their models.

� Chains with a length of less than 30 amino acids

were also discarded.

From the remaining chains, a representative subset with

low pairwise sequence similarities was selected by run-

ning the algorithm #1 of Hobohm et al. (1992), using

the local alignment procedure search (rigorous Smith-

Waterman algorithm) (Myers & Miller, 1988; Pearson,

1990) using the pam120 matrix, with gap penalties -

12, -4. Thus we obtained a data set consisting of 464

distinct protein chains, corresponding to 123,752 amino

acids, roughly 10 times more than what was available in

(Qian & Sejnowski, 1988).

Another set we used is the EMBL non-redundant

PDB subsets that can be accessed by ftp at the

site ftp.embl-heidelberg.de. Data details are

in the �le /pub/databases/pdb select/README.

The extraction is based on the �le:

/pub/databases/pdb select/1998 june.25.gz con-

taining a set of non-redundant (25%) PDB chains.

After removing 74 chains on which the DSSP program

crashes, we obtained another set of 824 sequences,

overlapping in part with the former ones.

In addition, we also used the original set of 126 se-

quences of Rost and Sander, corresponding to a to-

tal of 23,348 amino acid positions, as well as the

complementary set of 396 non-homologue sequences

(62,189 amino acids) prepared by Cu� and Barton (Cu�

& Barton, 1999). Both sets can be downloaded at

http://circinus.ebi.ac.uk:8081/pred res/.

Finally, we also constructed two more data sets, con-

taining all proteins in PDB which are at least 30 amino

acids long, produce DSSP output without chain breaks,

and have a resolution of at least 2.5 �A. Furthermore the

proteins in both sets have less than 25% identity to any

of the 126 sequences of Rost and Sander. In both sets,

internal homology is reduced again by Hobohm's #1 al-

gorithm, keeping the PDB sequences with the best res-

olution. For one set, we use the standard 25% threshold

curve for homology reduction. For the other set, how-

ever, we raise, the threshold curve by 25%. The set with

25% homology threshold contains 826 sequences, corre-

sponding to a total of 193,249 amino acid positions, while

the set with 50% homology threshold contains 1180 se-

quences (282,303 amino acids).

Thus, to the best of our knowledge, our experi-

ments are based on the currently largest available cor-

pora of non-redundant data. In all but two exper-

iments (see below), pro�les were obtained from the

HSSP database (Schneider et al., 1997) available at

http://www.sander.embl-heidelberg.de/hssp/.

2.2 Bidirectional Recurrent Neural Nets
Letting t denote position within a protein sequence, the

overall model can be viewed as a probabilistic model

that outputs, for each t, a vector Ot = (o1;t; o2;t; o3;t)

with oi;t � 0 and
P

i
oi;t = 1. The oi;t's are the SS

class membership probabilities. The output prediction

has the functional form:

Ot = �(Ft; Bt; It) (1)
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and depends on the forward (upstream) context Ft, the

backward (downstream context) Bt, and the input It at

time t. The vector It 2 IRk encodes the external input

at time t. In the most simple case, where the input is

limited to a single amino acid, k = 20 by using one-hot

encoding. In this case, it is not necessary to include an

extra input symbol to represent the terminal portions of

the protein. Larger input windows extending over sev-

eral amino acids are of course also possible. The function

� is realized by a neural network N� (see center and top

connections in Figure 2). Thus to guarantee a consis-

tent probabilistic interpretation, the three output units

of network N� are obtained as normalized exponentials

(or softmax ):

oi;t =
exp(neti;t)P3

l=1
exp(netl;t)

i = 1; 2; 3

where neti;t is the activation of the i-th output unit at

position t. The performance of the model can be assessed

using the usual relative entropy between the estimated

and the target distribution.

The novelty of the model is in the contextual infor-

mation contained in the vectors Ft 2 IRn and especially

in Bt 2 IRm. These satisfy the recurrent bidirectional

equations:
Ft = �(Ft�1; It)

Bt = �(Bt+1; It)
(2)

Here �(�) and �(�) are learnable non-linear state tran-

sition functions. They can be implemented in di�erent

forms, but in this paper we assume that they are realized

by two NNs, N� and N� (left and right subnetworks in

Figure 2), with n and m logistic output units, respec-

tively. Thus, N� and N� are fed by n + k and m + k

inputs, respectively. Here also larger input windows are

possible, especially in combination with the weight shar-

ing approach described in (Riis & Krogh, 1996), and

di�erent inputs could be used for the computation of Ft,

Bt, and Ot. The forward chain Ft stores contextual in-

formation contained at the left of time t and plays the

same role as the internal state in standard RNNs. The

novel part of the model is the presence of an additional

backward chain Bt, in charge of storing contextual in-

formation contained at the right of time t, i.e. in the

future. The actual form of the bidirectional dynam-

ics is controlled by the connection weights in the sub-

networks N� and N�. As we shall see, these weights

can be adjusted using a maximum-likelihood approach.

Since eq. 2 involves two recurrences, two correspond-

ing boundary conditions must be speci�ed, at the be-

ginning and the end of the sequence. For simplicity,

here we use F0 = BT+1 = 0, but it is also possible to

adapt the boundaries to the data, extending the tech-

nique suggested in (Forcada & Carrasco, 1995) for stan-

dard RNNs.

Input: whole protein sequence

output: sequence of secondary structure symbols

H

t

Bt

A S P L E

t

Ot

I

E E H H

F

Figure 1: Direct dependencies among the variables in-

volved in a bidirectional BRNN. The boundary condi-

tions are provided by F0 = BT+1 = 0, and by the inputs

associated with the current protein sequence.

The discrete time index t ranges from 1 to T , the total

length of the protein sequence being examined. Hence

the probabilistic output Ot is parameterized by a RNN

and depends on the input It and on the contextual in-

formation, from the entire protein, summarized into the

pair (Ft; Bt). In contrast, in a conventional NN approach

this probability distribution depends only on a relatively

short subsequence of amino acids. Intuitively, we can

think of Ft and Bt as "wheels" that can be "rolled" along

the protein. To predict the class at position t, we roll the

wheels in opposite directions from the N and C terminus

up to position t and then combine what is read on the

wheels with It to calculate the proper output using �.

The global mapping from the input amino acid se-

quence to the output SS sequence can be described by

the graphical model shown in Fig. 1. The network

represents the direct dependencies among the variables

It; Ft; Bt; Ot, unrolled over time for t = 1; : : : ; T . Each

node is labeled by one of the variables and arcs represent

direct functional dependencies. Interestingly, the same

graph would represent a Bayesian network if the rela-

tionships amongst It; Ft; Bt; Ot were probabilistic, rather

than deterministic as in Eqs. 2 and 1. In fact, such

probabilistic version of the architecture would yield a

bidirectional generalization of IOHMMs. Unlike RNNs,

however, propagation of information in bidirectional

IOHMMs is computationally expensive. The underlying

Bayesian network contains undirected loops that require

the use of the junction tree algorithm (Jensen et al.,

1990). While inference in this network can be shown

to be tractable, the corresponding time complexity of

O(n3) for each time step (here n is the typical number

of states in the chains) limits their practical applicability

to the SS prediction task (Baldi et al., 2000b).

An architecture resulting from Eqs. 2 and 1 is shown
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t-th amino acid

ϕ(.) β(.)

copycopy

η(.)
F Bt

Ot

q-1

t

q+1

I
Bt+1Ft-1

t

Figure 2: A BRNN architecture.

in Fig. 2 where, for simplicity, all the NNs have a sin-

gle hidden layer. The hidden state Ft is copied back

to the input. This is graphically represented in Fig.

2 using the causal shift operator q�1 that operates on

a generic temporal variable Xt and is symbolically de-

�ned as Xt�1 = q�1Xt. Similarly, q, the inverse (or

non-causal) shift operator is de�ned Xt+1 = qXt and

q�1q = 1. As shown in Fig. 2, a non-causal copy is per-

formed on the hidden state Bt. Clearly, removal of fBtg

would result in a standard causal RNN.

The number of degrees of freedom of the model de-

pends on the following factors: (1) the dimensions n and

m of the forward and backward state vectors; (2) the

number of hidden units in the three feedforward net-

works realizing the state transition and the output func-

tions (see Fig. 2). It is important to remark that the

BRNN has been de�ned as a stationary model, i.e. the

connection weights in the networks realizing �(�), �(�)

and �(�) do not change over time, i.e with respect to po-

sition along the protein. This is a form of weight sharing

that reduces the number of free parameter and the risk of

over�tting, without necessarily sacri�cing the capability

to capture distant information.

Since the graph shown in Fig. 1 is acyclic, nodes can be

topologically sorted, de�ning unambiguously the global

processing scheme. Using the network unrolled through

time, the BRNN prediction algorithm updates all the

states Ft from left to right, starting from F0 = 0. Sim-

ilarly, states Bt are updated from right to left. After

forward and backward propagations have taken place,

the predictions Ot can be computed. The forward and

backward propagations need to be computed from end

to end only once per protein sequence. As a result, the

time complexity of the algorithm is O(TW ), where W is

the number of weights and T the protein length. This

is the same complexity as feedforward networks fed by

a �xed-size window. In the case of BRNNs, W typically

grows as O(n2) and the actual number of weights can

be reduced by limiting the number of hidden units in

the subnetworks for �(�) and �(�). Thus, inference in

BRNNs is more e�cient than in bidirectional IOHMMs,

where complexity is O(Tn3) (Baldi et al., 2000b).

Learning can be formulated as a maximum likelihood

estimation problem, where the log likelihood is essen-

tially the relative entropy function between the predicted

and the true conditional distribution of the secondary

structure sequence given the input amino acid sequence:

` =
X

sequences

TX

t=1

zi;t log oi;t (3)

with zi;t = 1 if the SS at position t is i, and zi;t = 0 other-

wise. The optimization problem can be solved by gradi-

ent ascent. The only di�erence with respect to standard

RNNs is that gradients must be computed by taking into

account non-causal temporal dependencies. Because the

unrolled network is acyclic, the generalized backpropa-

gation algorithm can be derived as a special case of the

backpropagation through structure algorithm (Frasconi

et al., 1998). Intuitively, the error signal, is �rst injected

into the leaf nodes, corresponding to the output vari-

ables Ot. The error is then propagated through time in

both directions, by following any reverse topological sort

of the unrolled network (see Figure 1). Obviously, this

step also involves backpropagation through the hidden

layers of the NNs. Since the model is stationary, weights

are shared among the di�erent replicas of the NNs at

di�erent time steps. Hence, the total gradient is simply

obtained by summing all the contributions associated

with di�erent time steps.

To speed-up convergence, we found it convenient to

adopt an on-line weight updating strategy. Once gra-

dients relative to a single protein have been computed,

weights are immediately updated. This scheme was en-

riched also with a heuristic adaptive learning rate algo-

rithm that progressively reduces the learning rate if the

average error reduction within a �xed number of epochs

falls below a given threshold.

2.3 Long-ranged dependencies
One of the principal di�culties when training standard

RNNs is the problem of vanishing gradients (Bengio

et al., 1994). Intuitively, in order to contribute to the

output at position or time t, the input signal at time

t�� must be propagated in the forward chain through �

replicas of the NN that implements the state transition

function. However, during gradient computation, error

signals must be propagated backward along the same

path. Each propagation can be interpreted as the prod-

uct between the error vector and the Jacobian matrix

associated with the transition function. Unfortunately,

when the dynamics develop attractors that allow the sys-

tem to reliably store past information, the norm of the

Jacobian is < 1. Hence, when � is large, gradients of
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the error at time t with respect to inputs at time t � �

tend to vanish exponentially. Similarly, in the case of

BRNNs, error propagation in both the forward and the

backward chains is subject to exponential decay. Thus,

although the model has in principle the capability of

storing remote information, such information cannot be

learnt e�ectively. Clearly, this is a theoretical argument

and its practical impact needs to be evaluated on a per

case basis.

In practice, in the case of proteins, the BRNN can

reliably utilize input information located within about

�15 amino acids (i.e., the total e�ective window size

is about 31). This was empirically evaluated by feed-

ing the model with increasingly long protein fragments.

We observed that the average predictions at the central

residues did not signi�cantly change if fragments were

extended beyond 41 amino acids. This is an improve-

ment over standard NNs with input window sizes rang-

ing from 11 to 17 amino acids (Rost & Sander, 1994;

Riis & Krogh, 1996). Yet, there is presumably relevant

information located at longer distances that our models

have not been able to discover so far.

To limit this problem, we propose a remedy motivated

by recent studies (Lin et al., 1996) suggesting that the

vanishing gradients problem can be mitigated by the use

of an explicit delay line applied to the output, which

provides shorter paths for the e�ective propagation of

error signals. Unfortunately, this idea cannot be applied

directly to BRNNs since output feedback, combined with

bidirectional propagation, would generate cycles in the

unrolled network. A similar mechanism, however, can

be implemented using the following modi�ed dynamics:

Ft = �(Ft�1; Ft�2; : : : ; Ft�s; It)

Bt = �(Bt+1; Bt+2; : : : ; Bt+s; It):
(4)

The explicit dependence on forward or backward

states introduces shortcut connections in the graphical

model, forming shorter paths along which gradients can

be propagated. This is akin to introducing higher or-

der Markov chains in the probabilistic version. However,

unlike Markov chains where the number of parameters

would grow exponentially with s, in the present case the

number of parameters grows only linearly with s. To

reduce the number of parameters, a simpli�ed version of

Eq. 4 limits the dependencies to state vectors located s

residues apart from t:

Ft = �(Ft�1; Ft�s; It)

Bt = �(Bt+1; Bt+s; It):
(5)

Another variant of the basic architecture which also al-

lows to increase the e�ective window size consists in feed-

ing the output networks with a window in the forward

and backward state chains. In this case, the prediction

is computed as

Ot = �(Ft�s; : : : ; Ft+s; Bt�s; : : : ; Bt+s; It): (6)

Notice that the window can extend in the past and the

future of t on both vectors Ft and Bt.

2.4 Multiple Alignments and Mixture of

Estimators
Multiple alignments and mixture of estimators are two

algorithmic ideas which have been shown to be very e�ec-

tive in the protein SS prediction task. Both of them have

been incorporated in our BRNN-based system. Multiple

predictors can be obtained by varying the size of the

BRNN, as controlled by the dimensions of the state vec-

tors and the number of hidden units. Moreover, di�er-

ent predictors can be obtained using pro�les, or multi-

ple alignments, in input mode (Rost & Sander, 1994),

or in output mode (Riis & Krogh, 1996). In the �rst

case, instead of a code for the current amino acid, the

input It contains the relative frequencies of amino acids

at position t in the protein family. In the second case, a

separate sequence of SS predictions is obtained for each

aligned protein, and then all the predictions are averaged

in each column k possibly in combination with a weight-

ing scheme. Since the two methods give di�erent predic-

tion errors|the input mode, for instance, yields slightly

more accurate beta-sheet predictions|it is reasonable to

build ensembles containing both types of predictors.

The setup developed in (Lund et al., 1997) has also

been used to build pro�les for sequences not present in

the HSSP data base. The setup contains methods simi-

lar to the ones applied earlier by Sander and Schneider

(1991), where the key parameter is the similarity thresh-

old (in terms of identical residues in a particular pairwise

alignment). In (Lund et al., 1997) the similarity thresh-

old, dividing sequences with structural homology from

those without, had the form I < 290p
L
, where L is the

length of the alignment. The threshold was then used

to build a pro�le for all the relevant PDB entries from

the matches found in the SWISS-PROT database. We

have also derived pro�les by running the BLAST pro-

gram, with default parameters, against the major pub-

licly available protein databases

3 Implementation and Results

We experimented with di�erent DSSP class assignments

to the three SS classes (see below). When we do not

specify otherwise, the default mapping we use is as fol-

lows: � is formed by DSSP class H, � by E, and 

by everything else (including DSSP classes G, S, T,

B, I, and "."). Otherwise we use the "harder" assign-

ment of the CASP competition (Moult et al., 1997;

CASP3, 1998), where � contains H , and G, while � con-

tains E, and B. Other assignments used in the literature

include (Riis & Krogh, 1996), where � contains DSSP

classes H, G, and I. A study of the e�ect of various as-

signments on the prediction performance can be found
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in (Cu� & Barton, 1999).

We carried out many experiments to tune up and eval-

uate the prediction system. The main results are sum-

marized in Tables 1-4. In a �rst set of experiments, base-

don the 824 sequences, we reserved 2/3 of the available

data for training, and 1/3 for testing, chosen at random.

We trained several BRNNs of di�erent sizes and di�er-

ent architectural details. Training was stopped using a

�xed threshold on the reduction in error, rather than

other adaptive criteria such as early stopping. In all ex-

periments, we set n = m and tried di�erent values for n

and s (see Eq. 6). The number of free parameters var-

ied from about 1400 to 2900. Qualitatively we observed

that using s > 0 can improve accuracy, but increasing n

beyond 12 does not help because of over�tting. Results

for this method, without using pro�les, are summarized

in the �rst rows of Table 1. By comparison, we also

trained several feedforward NNs on the same data. The

best feedforward NN achieved Q3 =67.2% accuracy us-

ing a window of 13 amino acids. By enriching the feed-

forward architecture with adaptive input encoding and

output �ltering, as in (Riis & Krogh, 1996), 68.5% ac-

curacy was achieved (output �ltering actually increases

the length of the input window). Hence, the best BRNN

outperforms our best feedforward network, even when

additional architectural design is included.

Subsequent experiments included the use of pro�les.

Table 1 reports the best results obtained by using mul-

tiple alignments, both at the input and output levels.

Pro�les at the input level consistently yielded better re-

sults. The best feedforward networks trained in the same

conditions achieve Q3 = 73.0% and 72.3%, respectively.

In a second set of experiments based on the 824 se-

quences, we combined several BRNNs, trained with 1/3-

2/3 data splitting, to form an ensemble, as in (Krogh &

Vedelsby, 1995), using a simple averaging scheme. Dif-

ferent networks were obtained by varying architectural

details such as n, s, and the number of hidden units.

Combining the 6 architectures at the bottom of Table

1, using pro�les at the input level only, we obtained the

best accuracy Q3 = 75.1%, measured in this case using

7-fold cross validation. We also tried to include in the

ensemble a set of 4 BRNNs using pro�les at the output

level, but performance in this way slightly decreased to

75.0%. We also combined 8 di�erent BRNNs, 6 with in-

put pro�les and 2 with output pro�les. The percentage

of correctly predicted residues on the test set of 59,865

residues is 75.07%. Because of the absence of any im-

provements from including output pro�les, in the rest

of this work we focus on ensembles made up of the 6

architectures at the bottom of Table 1.

In order to study the capabilities of the model to cap-

ture long-ranged information, we performed the follow-

ing experiments For each protein and for each amino acid

Table 1: Experimental results using a single BRNN and 1/3

of the data as test set. n is the length of the context vectors

Ft and Bt(n = m). s is the number of additional consecutive

context vectors in the future and the past of both Ft and Bt

that are used in the prediction. h�, h� and h� are the number

of hidden units for the transition networks N�, N�, and the

output network N�, respectively. We always set h� = h�. W

is the number of parameters.

Pro�les n s h� h� W Accuracy (Q3)

No 7 2 8 11 1611 68.7%

No 9 2 8 11 1899 68.8%

No 7 3 8 11 1919 68.6%

No 8 3 9 11 2181 68.8%

No 20 0 17 11 2821 67.7%

Output 9 2 8 11 1899 72.6%

Output 8 3 9 11 2181 72.7%

Input 9 2 8 11 1899 73.3%

Input 8 3 9 11 2181 73.4%

Input 12 3 9 10 2757 73.6%

Input 7 3 8 11 1919 73.4%

Input 8 3 9 10 2045 73.4%

Input 12 3 9 11 2949 73.2%

position t, we fed the BRNN mixture described above

with a sequence obtained by replacing all inputs outside

the range [t� �; t+ � ] with null values. The experiment

was repeated for di�erent values of � from 0 to 23. Fig-

ure 3 shows the results. Each diagram is a normalized

row of the test set confusion table, for the semi-window

size � ranging from 0 to 23. So for example the line la-

beled H ! C in the �rst diagram is the percentage of

helices classi�ed as coils, as a function of � . The curves

are almost stable for � > 15. Although the model is

not sensitive to very distant information, it should be

remarked that typical feedforward nets reported in the

literature do not exploit information beyond � = 8.

To further explore the long-ranged information prob-

lem we conducted another set of experiments using

BRNNs with simpli�ed shortcuts (see eq. 5). In this

case, as for the results reported in Table 1, we used a

single model (rather than a mixture) and the test set

method (1/3 of the available data) for measuring accu-

racy. We tried all values of s from 1 to 10, but in no case

could we observe a signi�cant performance improvement

on the test set. Interestingly, our experiments showed

that using shortcuts reduces the convergence di�culties

associated with vanishing gradients (see Sec. 2.3): accu-

racy on the training set increased from 75.7% using no

shortcuts to 76.9% with s = 3. On the other hand, the

gap between training set and test set performance also

increased. Thus over�tting o�sets the convergence im-

provement, probably because long-ranged information is

too sparse and noisy.

We run another experiment by training our system on
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Figure 3: Distant information exploited by the BRNN.

The horizontal axis represents � , the distance from a

given position beyond which all entries are set to null

values. Each curve represents a normalized row of the

test-set confusion matrix.

the 824 sequences and using the o�cial test sequences

used at the 1998 CASP3 competition, this time using

the CASP assignment. The pro�les used for testing

here were not obtained from the HSSP data base but by

the method described above. The CASP3 competition

was won by one of the two programs entered by D.

Jones, which selected 23 out of 35 proteins obtaining a

performance of Q3 = 77:6% per protein, or Q3 = 75:5%

per residue. We evaluated that system on the whole

set of 35 proteins by using Jones' prediction server at

http://insulin.bio.warwick.ac.uk/psiform.html.

It achieved 76:2% per protein and Q3 = 74:3% per

residue. On the same 35 sequences our system achieved

74:6% per protein and Q3 = 73:0% per residue. A test

set of 35 proteins is relatively small for drawing general

conclusions. Still, we believe that this result con�rms

the e�ectiveness of the proposed model, especially in

consideration of the fact that Jones' system builds upon

more recent pro�les based on iterative search in the

TrEMBL database (Bairoch & Apweiler, 1999). These

Table 2: First confusion matrix derived with an ensemble of

6 BRNNs with 2/3-1/3 data splitting. First row provides per-

centages of predicted helices, sheets, and coils within (DSSP-

assigned) helices.

pred � pred � pred 

� 80.03% 2.88% 17.09%

� 4.68% 62.01% 33.31%

 10.60% 9.62% 79.78%

pro�les contain many more sequences than our training

pro�les which are based on the older HSSP pro�le

approach, leaving room for further improvements of our

system.

To further compare our system with other predictors,

as in (Cu� & Barton, 1999), we also trained an ensem-

ble of BRNNs using the 126 sequences in the Rost and

Sander data set. The performance on the 396 test se-

quences prepared by Cu� and Barton is Q3 = 72:0%.

This is slightly better than the 71:9% score for the sin-

gle best predictor (PHD) amongst (DSC, PHD, NNSSP,

and PREDATOR) reported in (Cu� & Barton, 1999).

This result is also achieved with the CASP class assign-

ment.

Finally, we also trained an ensemble of 6 BRNNs

using the set containing 826 sequences with less than

25% identity to the 126 sequences of Rost and Sander.

When tested on the 126 sequences, the system achieves

Q3 = 74:7% per residue, with correlation coe�cients

C� = 0:692, C� = 0:571, and C = 0:544. This is

again achieved with the harder CASP assignment. In

contrast, the Q3 = 75:1% described above and obtained

by 7 fold cross-validation on 824 sequences was obtained

with the easier class assignment (H! �, E! �, the rest

! ). The same experiment was performed using the

larger training set of 1,180 sequences having also less

than 25% identity with the 126 sequences of Rost and

Sander, but with a less stringent redundancy reduction

requirement. In this case, and with the same hard as-

signment, the results are Q3 = 75:3% with correlation

coe�cients C� = 0:704, C� = 0:583, and C = 0:550.

The corresponding confusion matrices are given in Ta-

bles 2 and 3. We also con�rm the observation made by

Cu� and Barton (1999) concerning the impact of the

class assignment: the same system tested with the de-

fault class assignment achieves a performance of Q3 =

77.3%.

4 Discussion

Given the large number of protein sequences available

through genome and other sequencing projects, even

small percentage improvements in SS prediction can be

signi�cant. The system presented here achieves an over-

all performance close to 76% correct classi�cation, at
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Table 3: Same as above. First row provides percentages

of (DSSP-assigned) helices, sheets, and coils within the pre-

dicted helices.

� � 

pred � 81.29% 3.46% 15.25%

pred � 4.68% 73.20% 22.12%

pred  11.07% 15.69% 73.24%

Table 4: Summary of main performance results.

Training Test Class Performance

sequences sequences assignment per residue

824 (2/3) 824 (1/3) default Q3 = 75.1%

824 35 CASP Q3 = 73.0%

126 396 CASP Q3 = 72.0%

826 126 CASP Q3 = 74.7%

1180 126 CASP Q3 = 75.3%

1180 126 CASP Q3 = 75.9%

least comparable to the best existing predictors, but us-

ing a di�erent NN approach based on recurrent networks

and bidirectional dynamics. A thorough comparison

with D. Jones system (winner of CASP3) has not been

carried out at this time, and details about his method re-

main unpublished. By selecting a subset of 24 sequences

out of the 35 CASP3 sequences according to our own cri-

teria (prediction con�dence above a certain threshold),

we can match Jones best results. Such a comparison,

however, is not entirely fair since it does not satisfy the

conditions of a blind prediction.

Interestingly, we have circumstantial evidence that the

two methods behave in signi�cantly di�erent ways: there

exist sequences for which our method achieves over 80%

correct prediction, while Jones method is below 70%, and

vice versa. Such di�erences require further study, and

suggest that both methods could be combined to further

improve the results. In particular, if the advantage of the

method of Jones resides in the type of alignments used,

similar alignments could be incorporated in the BRNN

approach. While there is room for performance improve-

ment, one should also not forget that 100% correct pre-

diction, from the primary sequence alone, is probably

unachievable if nothing else because a minority of pro-

teins may not fold spontaneously, or because beta-sheet

partner strands may be located on a di�erent chain.

Most importantly, perhaps, we have developed here

new algorithmic ideas that begin to address the problem

of long-ranged dependencies. Unlike feedforward net-

works, BRNNs can possibly prove advantageous from

this point of view and our preliminary experiments en-

courage further investigations. There are additional di-

rections in which this work could be extended includ-

ing many architectural variations. In addition to the

use of larger input windows for It, one may consider

non-symmetrical chains for the past and the future, and

the use of priors on the parameters and/or the archi-

tecture together with a maximum a posteriori learning

approach. It may also be advantageous to use an array of

"wheels", instead of just two, of various memory capac-

ity, rolling in di�erent directions along the protein and

possibly over shorter distances. It is also worth noting

that using multi-layered perceptrons for implementing

�(:) and �(:) is just one of the available options. For

example, a generalization of second-order RNN (Giles

et al., 1992) is an easily conceivable alternative parame-

terization.

Finally, it is clear that the ideas introduced can be

applied to other problems in bioinformatics, as well as

other domains, where non-causal dynamical approaches

are suitable. Obvious candidates for further tests of the

general method include the prediction of beta-sheet part-

ners, of DNA exon/intron boundaries and promoter re-

gions, of RNA secondary structure, and of protein func-

tional domains, such as signal peptides.
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